diff --git a/RecompPort.vcxproj b/RecompPort.vcxproj
index 6978eca..132452b 100644
--- a/RecompPort.vcxproj
+++ b/RecompPort.vcxproj
@@ -137,6 +137,7 @@
+
diff --git a/RecompPort.vcxproj.filters b/RecompPort.vcxproj.filters
index c3edfb2..700a836 100644
--- a/RecompPort.vcxproj.filters
+++ b/RecompPort.vcxproj.filters
@@ -21,6 +21,9 @@
Source Files
+
+ Source Files
+
diff --git a/include/recomp_port.h b/include/recomp_port.h
index 834115d..7852650 100644
--- a/include/recomp_port.h
+++ b/include/recomp_port.h
@@ -19,6 +19,15 @@ constexpr uint32_t byteswap(uint32_t val) {
namespace RecompPort {
+ struct JumpTable {
+ uint32_t vram;
+ uint32_t addend_reg;
+ uint32_t rom;
+ uint32_t lw_vram;
+ uint32_t jr_vram;
+ std::vector entries;
+ };
+
struct Function {
uint32_t vram;
uint32_t rom;
@@ -26,11 +35,17 @@ namespace RecompPort {
std::string name;
};
+ struct FunctionStats {
+ std::vector jump_tables;
+ };
+
struct Context {
std::vector functions;
std::unordered_map> functions_by_vram;
+ std::vector rom;
};
+ bool analyze_function(const Context& context, const Function& function, const std::vector& instructions, FunctionStats& stats);
bool recompile_function(const Context& context, const Function& func, std::string_view output_path);
}
diff --git a/recomp.h b/recomp.h
index ef01f81..6cc002c 100644
--- a/recomp.h
+++ b/recomp.h
@@ -104,4 +104,6 @@ typedef struct {
uint64_t hi, lo;
} recomp_context;
+void switch_error(const char* func, uint32_t vram, uint32_t jtbl);
+
#endif
diff --git a/src/analysis.cpp b/src/analysis.cpp
new file mode 100644
index 0000000..c3e1e47
--- /dev/null
+++ b/src/analysis.cpp
@@ -0,0 +1,229 @@
+#include
+#include
+
+#include "rabbitizer.hpp"
+#include "fmt/format.h"
+
+#include "recomp_port.h"
+
+extern "C" const char* RabbitizerRegister_getNameGpr(uint8_t regValue);
+
+// If 64-bit addressing is ever implemented, these will need to be changed to 64-bit values
+struct RegState {
+ // For tracking a register that will be used to load from RAM
+ uint32_t prev_lui;
+ uint32_t prev_addiu;
+ uint8_t prev_addend_reg;
+ bool valid_lui;
+ bool valid_addiu;
+ bool valid_addend;
+ // For tracking a register that has been loaded from RAM
+ uint32_t loaded_lw_addr;
+ uint32_t loaded_addr;
+ uint8_t loaded_addend_reg;
+ bool valid_loaded;
+
+ RegState() = default;
+
+ void invalidate() {
+ prev_lui = 0;
+ prev_addiu = 0;
+ prev_addend_reg = 0;
+
+ valid_lui = false;
+ valid_addiu = false;
+ valid_addend = false;
+
+ loaded_lw_addr = 0;
+ loaded_addr = 0;
+ loaded_addend_reg = 0;
+
+ valid_loaded = false;
+ }
+};
+
+using InstrId = rabbitizer::InstrId::UniqueId;
+
+bool analyze_instruction(const rabbitizer::InstructionCpu& instr, const RecompPort::Function& func, RecompPort::FunctionStats& stats,
+ RegState reg_states[32]) {
+ // Temporary register state for tracking the register being operated on
+ RegState temp{};
+
+ int rd = (int)instr.GetO32_rd();
+ int rs = (int)instr.GetO32_rs();
+ int base = rs;
+ int rt = (int)instr.GetO32_rt();
+ int sa = (int)instr.Get_sa();
+
+ uint16_t imm = instr.Get_immediate();
+
+ auto check_move = [&]() {
+ if (rs == 0) {
+ // rs is zero so copy rt to rd
+ reg_states[rd] = reg_states[rt];
+ } else if (rt == 0) {
+ // rt is zero so copy rs to rd
+ reg_states[rd] = reg_states[rs];
+ } else {
+ // Not a move, invalidate rd
+ reg_states[rd].invalidate();
+ }
+ };
+
+ switch (instr.getUniqueId()) {
+ case InstrId::cpu_lui:
+ // rt has been completely overwritten, so invalidate it
+ reg_states[rt].invalidate();
+ reg_states[rt].prev_lui = (int16_t)imm << 16;
+ reg_states[rt].valid_lui = true;
+ break;
+ case InstrId::cpu_addiu:
+ // The target reg is a copy of the source reg plus an immediate, so copy the source reg's state
+ reg_states[rt] = reg_states[rs];
+ // Set the addiu state if and only if there hasn't been an addiu already
+ if (!reg_states[rt].valid_addiu) {
+ reg_states[rt].prev_addiu = (int16_t)imm;
+ reg_states[rt].valid_addiu = true;
+ } else {
+ // Otherwise, there have been 2 or more consecutive addius so invalidate the whole register
+ reg_states[rt].invalidate();
+ }
+ break;
+ case InstrId::cpu_addu:
+ // rd has been completely overwritten, so invalidate it
+ temp.invalidate();
+ // Exactly one of the two addend register states should have a valid lui at this time
+ if (reg_states[rs].valid_lui != reg_states[rt].valid_lui) {
+ // Track which of the two registers has the valid lui state and which is the addend
+ int valid_lui_reg = reg_states[rs].valid_lui ? rs : rt;
+ int addend_reg = reg_states[rs].valid_lui ? rt : rs;
+
+ // Copy the lui reg's state into the destination reg, then set the destination reg's addend to the other operand
+ temp = reg_states[valid_lui_reg];
+ temp.valid_addend = true;
+ temp.prev_addend_reg = addend_reg;
+ } else {
+ // Check if this is a move
+ check_move();
+ }
+ reg_states[rd] = temp;
+ break;
+ case InstrId::cpu_daddu:
+ case InstrId::cpu_or:
+ check_move();
+ break;
+ case InstrId::cpu_lw:
+ // rt has been completely overwritten, so invalidate it
+ temp.invalidate();
+ // If the base register has a valid lui state and a valid addend before this, then this may be a load from a jump table
+ if (reg_states[base].valid_lui && reg_states[base].valid_addend) {
+ // Exactly one of the lw and the base reg should have a valid lo16 value
+ bool nonzero_immediate = imm != 0;
+ if (nonzero_immediate != reg_states[base].valid_addiu) {
+ uint32_t lo16;
+ if (nonzero_immediate) {
+ lo16 = (int16_t)imm;
+ } else {
+ lo16 = reg_states[base].prev_addiu;
+ }
+
+ uint32_t address = reg_states[base].prev_lui + lo16;
+ temp.valid_loaded = true;
+ temp.loaded_lw_addr = instr.getVram();
+ temp.loaded_addr = address;
+ temp.loaded_addend_reg = reg_states[base].prev_addend_reg;
+ }
+ }
+ reg_states[rt] = temp;
+ break;
+ case InstrId::cpu_jr:
+ // Ignore jr $ra
+ if (rs == (int)rabbitizer::Registers::Cpu::GprO32::GPR_O32_ra) {
+ break;
+ }
+ // Check if the source reg has a valid loaded state and if so record that as a jump table
+ if (reg_states[rs].valid_loaded) {
+ stats.jump_tables.emplace_back(
+ reg_states[rs].loaded_addr,
+ reg_states[rs].loaded_addend_reg,
+ 0,
+ reg_states[rs].loaded_lw_addr,
+ instr.getVram(),
+ std::vector{}
+ );
+ } else {
+ // Inconclusive analysis
+ fmt::print(stderr, "Failed to to find jump table for `jr {}` at 0x{:08X} in {}\n", RabbitizerRegister_getNameGpr(rs), instr.getVram(), func.name);
+ return false;
+ }
+ break;
+ default:
+ if (instr.modifiesRd()) {
+ reg_states[rd].invalidate();
+ }
+ if (instr.modifiesRt()) {
+ reg_states[rt].invalidate();
+ }
+ break;
+ }
+ return true;
+}
+
+bool RecompPort::analyze_function(const RecompPort::Context& context, const RecompPort::Function& func,
+ const std::vector& instructions, RecompPort::FunctionStats& stats) {
+ // Create a state to track each register (r0 won't be used)
+ RegState reg_states[32] {};
+
+ // Look for jump tables
+ // A linear search through the func won't be accurate due to not taking control flow into account, but it'll work for finding jtables
+ for (const auto& instr : instructions) {
+ if (!analyze_instruction(instr, func, stats, reg_states)) {
+ return false;
+ }
+ }
+
+ // Sort jump tables by their address
+ std::sort(stats.jump_tables.begin(), stats.jump_tables.end(),
+ [](const JumpTable& a, const JumpTable& b)
+ {
+ return a.vram < b.vram;
+ });
+
+ // Determine jump table sizes
+ for (size_t i = 0; i < stats.jump_tables.size(); i++) {
+ JumpTable& cur_jtbl = stats.jump_tables[i];
+ uint32_t end_address = (uint32_t)-1;
+ uint32_t entry_count = 0;
+ uint32_t vram = cur_jtbl.vram;
+
+ if (i < stats.jump_tables.size() - 1) {
+ end_address = stats.jump_tables[i + 1].vram;
+ }
+
+ // TODO this assumes that the jump table is in the same section as the function itself
+ cur_jtbl.rom = cur_jtbl.vram + func.rom - func.vram;
+
+ while (vram < end_address) {
+ // Retrieve the current entry of the jump table
+ // TODO same as above
+ uint32_t rom_addr = vram + func.rom - func.vram;
+ uint32_t jtbl_word = byteswap(*reinterpret_cast(&context.rom[rom_addr]));
+ // Check if the entry is a valid address in the current function
+ if (jtbl_word < func.vram || jtbl_word > func.vram + func.words.size_bytes()) {
+ // If it's not then this is the end of the jump table
+ break;
+ }
+ cur_jtbl.entries.push_back(jtbl_word);
+ vram += 4;
+ }
+
+ if (cur_jtbl.entries.size() == 0) {
+ fmt::print("Failed to determine size of jump table at 0x{:08X} for instruction at 0x{:08X}\n", cur_jtbl.vram, cur_jtbl.jr_vram);
+ return false;
+ }
+
+ //fmt::print("Jtbl at 0x{:08X} (rom 0x{:08X}) with {} entries used by instr at 0x{:08X}\n", cur_jtbl.vram, cur_jtbl.rom, cur_jtbl.entries.size(), cur_jtbl.jr_vram);
+ }
+
+ return true;
+}
diff --git a/src/main.cpp b/src/main.cpp
index 7e2eda9..9d759c8 100644
--- a/src/main.cpp
+++ b/src/main.cpp
@@ -221,7 +221,7 @@ std::unordered_set ignored_funcs {
"__osSetConfig",
"__osGetConfig",
"__osSetWatchLo",
- "__osGetWatchLo",
+ "__osGetWatchLo"
};
int main(int argc, char** argv) {
@@ -254,21 +254,25 @@ int main(int argc, char** argv) {
// Pointer to the symbol table section
ELFIO::section* symtab_section = nullptr;
- // Size of the ROM as determined by the elf
- ELFIO::Elf_Xword rom_size = 0;
// ROM address of each section
std::vector section_rom_addrs{};
+
+ RecompPort::Context context{};
section_rom_addrs.resize(elf_file.sections.size());
+ context.functions.reserve(1024);
+ context.rom.reserve(8 * 1024 * 1024);
// Iterate over every section to record rom addresses and find the symbol table
fmt::print("Sections\n");
for (const std::unique_ptr& section : elf_file.sections) {
- fmt::print(" {}: {} @ 0x{:08X}, 0x{:08X}\n", section->get_index(), section->get_name(), section->get_address(), rom_size);
+ //fmt::print(" {}: {} @ 0x{:08X}, 0x{:08X}\n", section->get_index(), section->get_name(), section->get_address(), context.rom.size());
// Set the rom address of this section to the current accumulated ROM size
- section_rom_addrs[section->get_index()] = rom_size;
- // If this section isn't bss (SHT_NOBITS) and ends up in the rom (SHF_ALLOC), increase the rom size by this section's size
+ section_rom_addrs[section->get_index()] = context.rom.size();
+ // If this section isn't bss (SHT_NOBITS) and ends up in the rom (SHF_ALLOC), copy this section into the rom
if (section->get_type() != ELFIO::SHT_NOBITS && section->get_flags() & ELFIO::SHF_ALLOC) {
- rom_size += section->get_size();
+ size_t cur_rom_size = context.rom.size();
+ context.rom.resize(context.rom.size() + section->get_size());
+ std::copy(section->get_data(), section->get_data() + section->get_size(), &context.rom[cur_rom_size]);
}
// Check if this section is the symbol table and record it if so
if (section->get_type() == ELFIO::SHT_SYMTAB) {
@@ -278,16 +282,13 @@ int main(int argc, char** argv) {
// If no symbol table was found then exit
if (symtab_section == nullptr) {
- exit_failure("No symbol section found\n");
+ exit_failure("No symbol table section found\n");
}
ELFIO::symbol_section_accessor symbols{ elf_file, symtab_section };
fmt::print("Num symbols: {}\n", symbols.get_symbols_num());
- RecompPort::Context context{};
- context.functions.reserve(1024);
-
for (int sym_index = 0; sym_index < symbols.get_symbols_num(); sym_index++) {
std::string name;
ELFIO::Elf64_Addr value;
@@ -303,19 +304,30 @@ int main(int argc, char** argv) {
// Check if this symbol is a function or has no type (like a regular glabel would)
// Symbols with no type have a dummy entry created so that their symbol can be looked up for function calls
- if (type == ELFIO::STT_FUNC || (type == ELFIO::STT_NOTYPE && section_index < section_rom_addrs.size())) {
- auto section_rom_addr = section_rom_addrs[section_index];
- auto section_offset = value - elf_file.sections[section_index]->get_address();
- const uint32_t* words = reinterpret_cast(elf_file.sections[section_index]->get_data() + section_offset);
- uint32_t vram = static_cast(value);
- uint32_t num_instructions = type == ELFIO::STT_FUNC ? size / 4 : 0;
- context.functions_by_vram[vram].push_back(context.functions.size());
- context.functions.emplace_back(
- vram,
- static_cast(section_offset + section_rom_addr),
- std::span{ words, num_instructions },
- std::move(name)
- );
+ if (type == ELFIO::STT_FUNC || type == ELFIO::STT_NOTYPE) {
+ if (section_index < section_rom_addrs.size()) {
+ auto section_rom_addr = section_rom_addrs[section_index];
+ auto section_offset = value - elf_file.sections[section_index]->get_address();
+ const uint32_t* words = reinterpret_cast(elf_file.sections[section_index]->get_data() + section_offset);
+ uint32_t vram = static_cast(value);
+ uint32_t num_instructions = type == ELFIO::STT_FUNC ? size / 4 : 0;
+ context.functions_by_vram[vram].push_back(context.functions.size());
+ context.functions.emplace_back(
+ vram,
+ static_cast(section_offset + section_rom_addr),
+ std::span{ words, num_instructions },
+ std::move(name)
+ );
+ } else {
+ uint32_t vram = static_cast(value);
+ context.functions_by_vram[vram].push_back(context.functions.size());
+ context.functions.emplace_back(
+ vram,
+ 0,
+ std::span{},
+ std::move(name)
+ );
+ }
}
}
diff --git a/src/recompilation.cpp b/src/recompilation.cpp
index 8d28d41..51caaef 100644
--- a/src/recompilation.cpp
+++ b/src/recompilation.cpp
@@ -1,5 +1,6 @@
#include
#include
+#include
#include "rabbitizer.hpp"
#include "fmt/format.h"
@@ -16,7 +17,7 @@ std::string_view ctx_gpr_prefix(int reg) {
return "";
}
-bool process_instruction(const RecompPort::Context& context, size_t instr_index, const std::vector& instructions, std::ofstream& output_file, bool indent, bool emit_link_branch, int link_branch_index, bool& needs_link_branch, bool& is_branch_likely) {
+bool process_instruction(const RecompPort::Context& context, const RecompPort::Function& func, const RecompPort::FunctionStats& stats, const std::unordered_set& skipped_insns, size_t instr_index, const std::vector& instructions, std::ofstream& output_file, bool indent, bool emit_link_branch, int link_branch_index, bool& needs_link_branch, bool& is_branch_likely) {
const auto& instr = instructions[instr_index];
needs_link_branch = false;
is_branch_likely = false;
@@ -30,6 +31,10 @@ bool process_instruction(const RecompPort::Context& context, size_t instr_index,
fmt::print(output_file, " // {}\n", instr.disassemble(0));
}
+ if (skipped_insns.contains(instr.getVram())) {
+ return true;
+ }
+
auto print_indent = [&]() {
fmt::print(output_file, " ");
};
@@ -49,7 +54,7 @@ bool process_instruction(const RecompPort::Context& context, size_t instr_index,
if (instr_index < instructions.size() - 1) {
bool dummy_needs_link_branch;
bool dummy_is_branch_likely;
- process_instruction(context, instr_index + 1, instructions, output_file, false, false, link_branch_index, dummy_needs_link_branch, dummy_is_branch_likely);
+ process_instruction(context, func, stats, skipped_insns, instr_index + 1, instructions, output_file, false, false, link_branch_index, dummy_needs_link_branch, dummy_is_branch_likely);
}
print_indent();
fmt::print(output_file, fmt_str, args...);
@@ -65,7 +70,7 @@ bool process_instruction(const RecompPort::Context& context, size_t instr_index,
if (instr_index < instructions.size() - 1) {
bool dummy_needs_link_branch;
bool dummy_is_branch_likely;
- process_instruction(context, instr_index + 1, instructions, output_file, true, false, link_branch_index, dummy_needs_link_branch, dummy_is_branch_likely);
+ process_instruction(context, func, stats, skipped_insns, instr_index + 1, instructions, output_file, true, false, link_branch_index, dummy_needs_link_branch, dummy_is_branch_likely);
}
fmt::print(output_file, " ");
fmt::print(output_file, fmt_str, args...);
@@ -102,6 +107,9 @@ bool process_instruction(const RecompPort::Context& context, size_t instr_index,
case InstrId::cpu_addu:
print_line("{}{} = ADD32({}{}, {}{})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
+ case InstrId::cpu_daddu:
+ print_line("{}{} = {}{} + {}{}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
+ break;
case InstrId::cpu_negu: // pseudo instruction for subu x, 0, y
case InstrId::cpu_subu:
print_line("{}{} = SUB32({}{}, {}{})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
@@ -260,6 +268,13 @@ bool process_instruction(const RecompPort::Context& context, size_t instr_index,
nonzero_func_index = cur_func_index;
}
}
+ if (nonzero_func_index == (size_t)-1) {
+ fmt::print(stderr, "[Warn] Potential jal resolution ambiguity\n");
+ for (size_t cur_func_index : matching_funcs_vec) {
+ fmt::print(stderr, " {}\n", context.functions[cur_func_index].name);
+ }
+ nonzero_func_index = 0;
+ }
real_func_index = nonzero_func_index;
ambiguous = false;
} else {
@@ -295,7 +310,28 @@ bool process_instruction(const RecompPort::Context& context, size_t instr_index,
if (rs == (int)rabbitizer::Registers::Cpu::GprO32::GPR_O32_ra) {
print_unconditional_branch("return");
} else {
- // TODO jump table handling
+ uint32_t instr_vram = instr.getVram();
+ auto find_result = std::find_if(stats.jump_tables.begin(), stats.jump_tables.end(),
+ [instr_vram](const RecompPort::JumpTable& jtbl) {
+ return jtbl.jr_vram == instr_vram;
+ });
+ if (find_result == stats.jump_tables.end()) {
+ fmt::print(stderr, "No jump table found for jr at 0x{:08X}\n", instr_vram);
+ }
+ const RecompPort::JumpTable& cur_jtbl = *find_result;
+ bool dummy_needs_link_branch, dummy_is_branch_likely;
+ process_instruction(context, func, stats, skipped_insns, instr_index + 1, instructions, output_file, false, false, link_branch_index, dummy_needs_link_branch, dummy_is_branch_likely);
+ print_indent();
+ // TODO this will fail if the register holding the addend is mangled, add logic to emit a temp with the addend into the code
+ fmt::print(output_file, "switch ({}{} >> 2) {{\n", ctx_gpr_prefix(cur_jtbl.addend_reg), cur_jtbl.addend_reg, cur_jtbl.vram);
+ for (size_t entry_index = 0; entry_index < cur_jtbl.entries.size(); entry_index++) {
+ print_indent();
+ print_line("case {}: goto L_{:08X}; break", entry_index, cur_jtbl.entries[entry_index]);
+ }
+ print_indent();
+ print_line("default: switch_error(__func__, 0x{:08X}, 0x{:08X})", instr_vram, cur_jtbl.vram);
+ print_indent();
+ fmt::print(output_file, "}}\n");
}
break;
case InstrId::cpu_bnel:
@@ -685,7 +721,7 @@ bool process_instruction(const RecompPort::Context& context, size_t instr_index,
}
bool RecompPort::recompile_function(const RecompPort::Context& context, const RecompPort::Function& func, std::string_view output_path) {
- fmt::print("Recompiling {}\n", func.name);
+ //fmt::print("Recompiling {}\n", func.name);
std::vector instructions;
// Open the output file and write the file header
@@ -717,6 +753,24 @@ bool RecompPort::recompile_function(const RecompPort::Context& context, const Re
vram += 4;
}
+ // Analyze function
+ RecompPort::FunctionStats stats{};
+ if (!RecompPort::analyze_function(context, func, instructions, stats)) {
+ fmt::print(stderr, "Failed to analyze {}\n", func.name);
+ output_file.clear();
+ return false;
+ }
+
+ std::unordered_set skipped_insns{};
+
+ // Add jump table labels into function
+ for (const auto& jtbl : stats.jump_tables) {
+ skipped_insns.insert(jtbl.lw_vram);
+ for (uint32_t jtbl_entry : jtbl.entries) {
+ branch_labels.insert(jtbl_entry);
+ }
+ }
+
// Second pass, emit code for each instruction and emit labels
auto cur_label = branch_labels.cbegin();
vram = func.vram;
@@ -737,7 +791,7 @@ bool RecompPort::recompile_function(const RecompPort::Context& context, const Re
++cur_label;
}
// Process the current instruction and check for errors
- if (process_instruction(context, instr_index, instructions, output_file, false, needs_link_branch, num_link_branches, needs_link_branch, is_branch_likely) == false) {
+ if (process_instruction(context, func, stats, skipped_insns, instr_index, instructions, output_file, false, needs_link_branch, num_link_branches, needs_link_branch, is_branch_likely) == false) {
fmt::print(stderr, "Error in recompilation, clearing {}\n", output_path);
output_file.clear();
return false;