Implemented initial set of instructions and ignored functions

This commit is contained in:
Mr-Wiseguy 2022-11-15 19:55:48 -05:00
parent 4b1dc14019
commit 8a0f0da0cc
9 changed files with 1204 additions and 15 deletions

View file

@ -1,17 +1,330 @@
#include <cstdio>
#include <cstdlib>
#include <unordered_set>
#include <span>
#include "rabbitizer.hpp"
#include "elfio/elfio.hpp"
#include "fmt/format.h"
#include <cstdio>
#include "recomp_port.h"
std::unordered_set<std::string> ignored_funcs {
// OS initialize functions
"__createSpeedParam",
"__osInitialize_common",
"__osInitialize_autodetect",
"osInitialize",
// Audio interface functions
"osAiGetLength",
"osAiGetStatus",
"osAiSetFrequency",
"osAiSetNextBuffer",
"__osAiDeviceBusy",
// Video interface functions
"osViBlack",
"osViFade",
"osViGetCurrentField",
"osViGetCurrentFramebuffer",
"osViGetCurrentLine",
"osViGetCurrentMode",
"osViGetNextFramebuffer",
"osViGetStatus",
"osViRepeatLine",
"osViSetEvent",
"osViSetMode",
"osViSetSpecialFeatures",
"osViSetXScale",
"osViSetYScale",
"osViSwapBuffer",
"osCreateViManager",
"viMgrMain",
"__osViInit",
"__osViSwapContext",
"__osViGetCurrentContext",
// RDP functions
"osDpGetCounters",
"osDpSetStatus",
"osDpGetStatus",
"osDpSetNextBuffer",
"__osDpDeviceBusy",
// RSP functions
"osSpTaskLoad",
"osSpTaskStartGo",
"osSpTaskYield",
"osSpTaskYielded",
"__osSpDeviceBusy",
"__osSpGetStatus",
"__osSpRawStartDma",
"__osSpRawReadIo",
"__osSpRawWriteIo",
"__osSpSetPc",
"__osSpSetStatus",
// Controller functions
"osContGetQuery",
"osContGetReadData",
"osContInit",
"osContReset",
"osContSetCh",
"osContStartQuery",
"osContStartReadData",
"__osContAddressCrc",
"__osContDataCrc",
"__osContGetInitData",
"__osContRamRead",
"__osContRamWrite",
// EEPROM functions
"osEepromLongRead",
"osEepromLongWrite",
"osEepromProbe",
"osEepromRead",
"osEepromWrite",
"__osEepStatus",
// Rumble functions
"osMotorInit",
"osMotorStart",
"osMotorStop",
// PFS functions
"osPfsAllocateFile",
"osPfsChecker",
"osPfsDeleteFile",
"osPfsFileState",
"osPfsFindFile",
"osPfsFreeBlocks",
"osPfsGetLabel",
"osPfsInit",
"osPfsInitPak",
"osPfsIsPlug",
"osPfsNumFiles",
"osPfsRepairId",
"osPfsReadWriteFile",
"__osPackEepReadData",
"__osPackEepWriteData",
"__osPackRamReadData",
"__osPackRamWriteData",
"__osPackReadData",
"__osPackRequestData",
"__osPfsGetInitData",
"__osPfsGetOneChannelData",
"__osPfsGetStatus",
"__osPfsRequestData",
"__osPfsRequestOneChannel",
"__osPfsCreateAccessQueue",
// Low level serial interface functions
"__osSiDeviceBusy",
"__osSiGetStatus",
"__osSiRawStartDma",
"__osSiRawReadIo",
"__osSiRawWriteIo",
"__osSiCreateAccessQueue",
"__osSiGetAccess",
"__osSiRelAccess",
// Parallel interface (cartridge, DMA, etc.) functions
"osCartRomInit",
"osLeoDiskInit",
"osCreatePiManager",
"__osDevMgrMain",
"osPiGetCmdQueue",
"osPiGetStatus",
"osPiReadIo",
"osPiStartDma",
"osPiWriteIo",
"osEPiGetDeviceType",
"osEPiStartDma",
"osEPiWriteIo",
"osEPiReadIo",
"osPiRawStartDma",
"osPiRawReadIo",
"osPiRawWriteIo",
"osEPiRawStartDma",
"osEPiRawReadIo",
"osEPiRawWriteIo",
"__osPiRawStartDma",
"__osPiRawReadIo",
"__osPiRawWriteIo",
"__osEPiRawStartDma",
"__osEPiRawReadIo",
"__osEPiRawWriteIo",
"__osPiDeviceBusy",
"__osPiCreateAccessQueue",
"__osPiGetAccess",
"__osPiRelAccess",
"__osLeoAbnormalResume",
"__osLeoInterrupt",
"__osLeoResume",
// Threading functions
"osCreateThread",
"osStartThread",
"osStopThread",
"osDestroyThread",
"osYieldThread",
"osSetThreadPri",
"osGetThreadPri",
"osGetThreadId",
"__osDequeueThread",
// Message Queue functions
"osCreateMesgQueue",
"osSendMesg",
"osJamMesg",
"osRecvMesg",
"osSetEventMesg",
// Timer functions
"osStartTimer",
"osSetTimer",
"osStopTimer",
"__osInsertTimer",
"__osTimerInterrupt",
"__osTimerServicesInit",
"__osSetTimerIntr",
// exceptasm functions
"__osExceptionPreamble",
"__osException",
"send_mesg",
"handle_CpU",
"__osEnqueueAndYield",
"__osEnqueueThread",
"__osPopThread",
"__osNop",
"__osDispatchThread",
"__osCleanupThread",
"osGetCurrFaultedThread",
"osGetNextFaultedThread",
// interrupt functions
"osSetIntMask",
"osGetIntMask",
"__osDisableInt",
"__osRestoreInt",
"__osSetGlobalIntMask",
"__osResetGlobalIntMask",
// TLB functions
"osMapTLB",
"osUnmapTLB",
"osUnmapTLBAll",
"osSetTLBASID",
"osMapTLBRdb",
"osVirtualToPhysical",
"__osGetTLBHi",
"__osGetTLBLo0",
"__osGetTLBLo1",
"__osGetTLBPageMask",
"__osGetTLBASID",
"__osProbeTLB",
// Coprocessor 0 functions
"__osSetCount",
"osGetCount",
"__osSetSR",
"__osGetSR",
"__osSetCause",
"__osGetCause",
"__osSetCompare",
"__osGetCompare",
"__osSetConfig",
"__osGetConfig",
"__osSetWatchLo",
"__osGetWatchLo",
};
int main(int argc, char** argv) {
uint32_t word = 0x8D4A7E18; // lw
uint32_t vram = 0x80000000;
int extraLJust = 5;
rabbitizer::InstructionCpu instr(word, vram);
if (argc != 2) {
fmt::print("Usage: {} [input elf file]\n", argv[0]);
std::exit(EXIT_SUCCESS);
}
fmt::print("{}\n", instr.isBranch());
fmt::print("{:08X}: {}\n", word, instr.disassemble(extraLJust));
ELFIO::elfio elf_file;
auto exit_failure = [] (const std::string& error_str) {
fmt::print(stderr, error_str);
std::exit(EXIT_FAILURE);
};
if (!elf_file.load(argv[1])) {
exit_failure("Failed to load provided elf file\n");
}
if (elf_file.get_class() != ELFIO::ELFCLASS32) {
exit_failure("Incorrect elf class\n");
}
if (elf_file.get_encoding() != ELFIO::ELFDATA2MSB) {
exit_failure("Incorrect endianness\n");
}
// Pointer to the symbol table section
ELFIO::section* symtab_section = nullptr;
// Size of the ROM as determined by the elf
ELFIO::Elf_Xword rom_size = 0;
// ROM address of each section
std::vector<ELFIO::Elf_Xword> section_rom_addrs{};
section_rom_addrs.resize(elf_file.sections.size());
// Iterate over every section to record rom addresses and find the symbol table
fmt::print("Sections\n");
for (const std::unique_ptr<ELFIO::section>& section : elf_file.sections) {
fmt::print(" {}: {} @ 0x{:08X}, 0x{:08X}\n", section->get_index(), section->get_name(), section->get_address(), rom_size);
// Set the rom address of this section to the current accumulated ROM size
section_rom_addrs[section->get_index()] = rom_size;
// If this section isn't bss (SHT_NOBITS) and ends up in the rom (SHF_ALLOC), increase the rom size by this section's size
if (section->get_type() != ELFIO::SHT_NOBITS && section->get_flags() & ELFIO::SHF_ALLOC) {
rom_size += section->get_size();
}
// Check if this section is the symbol table and record it if so
if (section->get_type() == ELFIO::SHT_SYMTAB) {
symtab_section = section.get();
}
}
// If no symbol table was found then exit
if (symtab_section == nullptr) {
exit_failure("No symbol section found\n");
}
ELFIO::symbol_section_accessor symbols{ elf_file, symtab_section };
fmt::print("Num symbols: {}\n", symbols.get_symbols_num());
std::vector<RecompPort::Function> functions{};
functions.reserve(1024);
for (int sym_index = 0; sym_index < symbols.get_symbols_num(); sym_index++) {
std::string name;
ELFIO::Elf64_Addr value;
ELFIO::Elf_Xword size;
unsigned char bind;
unsigned char type;
ELFIO::Elf_Half section_index;
unsigned char other;
// Read symbol properties
symbols.get_symbol(sym_index, name, value, size, bind, type,
section_index, other);
// Check if this symbol is a function
if (type == ELFIO::STT_FUNC) {
auto section_rom_addr = section_rom_addrs[section_index];
auto section_offset = value - elf_file.sections[section_index]->get_address();
const uint32_t* words = reinterpret_cast<const uint32_t*>(elf_file.sections[section_index]->get_data() + section_offset);
functions.emplace_back(
static_cast<uint32_t>(value),
static_cast<uint32_t>(section_offset + section_rom_addr),
std::span{ reinterpret_cast<const uint32_t*>(words), size / 4 },
std::move(name)
);
}
}
fmt::print("Function count: {}\n", functions.size());
//#pragma omp parallel for
for (size_t i = 0; i < functions.size(); i++) {
const auto& func = functions[i];
if (!ignored_funcs.contains(func.name)) {
if (RecompPort::recompile_function(func, "out/" + func.name + ".c") == false) {
fmt::print(stderr, "Error recompiling {}\n", func.name);
std::exit(EXIT_FAILURE);
}
}
}
//RecompPort::recompile_function(functions.back(), "test.c");
return 0;
}

719
src/recompilation.cpp Normal file
View file

@ -0,0 +1,719 @@
#include <vector>
#include <set>
#include "rabbitizer.hpp"
#include "fmt/format.h"
#include "fmt/ostream.h"
#include "recomp_port.h"
using InstrId = rabbitizer::InstrId::UniqueId;
std::string_view ctx_gpr_prefix(int reg) {
if (reg != 0) {
return "ctx->r";
}
return "";
}
bool process_instruction(size_t instr_index, const std::vector<rabbitizer::InstructionCpu>& instructions, std::ofstream& output_file, bool indent, bool emit_link_branch, int link_branch_index, bool& needs_link_branch, bool& is_branch_likely) {
const auto& instr = instructions[instr_index];
needs_link_branch = false;
is_branch_likely = false;
// Output a comment with the original instruction
if (instr.isBranch() || instr.getUniqueId() == InstrId::cpu_j) {
fmt::print(output_file, " // {}\n", instr.disassemble(0, fmt::format("L_{:08X}", (uint32_t)instr.getBranchVramGeneric())));
} else if (instr.getUniqueId() == InstrId::cpu_jal) {
fmt::print(output_file, " // {}\n", instr.disassemble(0, "func"));
} else {
fmt::print(output_file, " // {}\n", instr.disassemble(0));
}
auto print_indent = [&]() {
fmt::print(output_file, " ");
};
auto print_line = [&]<typename... Ts>(fmt::format_string<Ts...> fmt_str, Ts ...args) {
print_indent();
fmt::print(output_file, fmt_str, args...);
fmt::print(output_file, ";\n");
};
auto print_branch_condition = [&]<typename... Ts>(fmt::format_string<Ts...> fmt_str, Ts ...args) {
fmt::print(output_file, fmt_str, args...);
fmt::print(output_file, " ");
};
auto print_branch = [&]<typename... Ts>(fmt::format_string<Ts...> fmt_str, Ts ...args) {
fmt::print(output_file, "{{\n ");
if (instr_index < instructions.size() - 1) {
bool dummy_needs_link_branch;
bool dummy_is_branch_likely;
process_instruction(instr_index + 1, instructions, output_file, true, false, link_branch_index, dummy_needs_link_branch, dummy_is_branch_likely);
}
fmt::print(output_file, " ");
fmt::print(output_file, fmt_str, args...);
if (needs_link_branch) {
fmt::print(output_file, ";\n goto after_{}", link_branch_index);
}
fmt::print(output_file, ";\n }}\n");
};
if (indent) {
print_indent();
}
int rd = (int)instr.GetO32_rd();
int rs = (int)instr.GetO32_rs();
int base = rs;
int rt = (int)instr.GetO32_rt();
int sa = (int)instr.Get_sa();
int fd = (int)instr.GetO32_fd();
int fs = (int)instr.GetO32_fs();
int ft = (int)instr.GetO32_ft();
uint16_t imm = instr.Get_immediate();
switch (instr.getUniqueId()) {
case InstrId::cpu_nop:
fmt::print(output_file, "\n");
break;
// Arithmetic
case InstrId::cpu_lui:
print_line("{}{} = {:#X} << 16", ctx_gpr_prefix(rt), rt, imm);
break;
case InstrId::cpu_addu:
print_line("{}{} = ADD32({}{}, {}{})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_negu: // pseudo instruction for subu x, 0, y
case InstrId::cpu_subu:
print_line("{}{} = SUB32({}{}, {}{})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_addiu:
print_line("{}{} = ADD32({}{}, {:#X})", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, (int16_t)imm);
break;
case InstrId::cpu_and:
print_line("{}{} = {}{} & {}{}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_andi:
print_line("{}{} = {}{} & {:#X}", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, imm);
break;
case InstrId::cpu_or:
print_line("{}{} = {}{} | {}{}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_ori:
print_line("{}{} = {}{} | {:#X}", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, imm);
break;
case InstrId::cpu_nor:
print_line("{}{} = ~({}{} | {}{})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_xor:
print_line("{}{} = {}{} ^ {}{}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_xori:
print_line("{}{} = {}{} ^ {:#X}", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, imm);
break;
case InstrId::cpu_sll:
print_line("{}{} = S32({}{}) << {}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_sllv:
print_line("{}{} = S32({}{}) << ({}{} & 31)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break;
case InstrId::cpu_sra:
print_line("{}{} = S32(S64({}{}) >> {})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_srav:
print_line("{}{} = S32(S64({}{}) >> ({}{} & 31)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break;
case InstrId::cpu_srl:
print_line("{}{} = S32(U32({}{}) >> {})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_srlv:
print_line("{}{} = S32(U32({}{}) >> ({}{} & 31)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break;
case InstrId::cpu_slt:
print_line("{}{} = S64({}{}) < S64({}{}) ? 1 : 0", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_slti:
print_line("{}{} = S64({}{}) < {:#X} ? 1 : 0", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, (int16_t)imm);
break;
case InstrId::cpu_sltu:
print_line("{}{} = U64({}{}) < U64({}{}) ? 1 : 0", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_sltiu:
print_line("{}{} = U64({}{}) < {:#X} ? 1 : 0", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, (int16_t)imm);
break;
case InstrId::cpu_mult:
print_line("uint64_t result = S64({}{}) * S64({}{}); lo = S32(result >> 0); hi = S32(result >> 32)", ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_multu:
print_line("uint64_t result = {}{} * {}{}; lo = S32(result >> 0); hi = S32(result >> 32)", ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_div:
print_line("lo = S32(S64({}{}) / S64({}{})); hi = S32(S64({}{}) % S64({}{}))", ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_divu:
print_line("lo = S32(U32({}{}) / U32({}{})); hi = S32(U32({}{}) % U32({}{}))", ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_mflo:
print_line("{}{} = lo", ctx_gpr_prefix(rd), rd);
break;
case InstrId::cpu_mfhi:
print_line("{}{} = hi", ctx_gpr_prefix(rd), rd);
break;
// Loads
// TODO ld
case InstrId::cpu_lw:
print_line("{}{} = MEM_W({:#X}, {}{})", ctx_gpr_prefix(rt), rt, (int16_t)imm, ctx_gpr_prefix(base), base);
break;
case InstrId::cpu_lh:
print_line("{}{} = MEM_H({:#X}, {}{})", ctx_gpr_prefix(rt), rt, (int16_t)imm, ctx_gpr_prefix(base), base);
break;
case InstrId::cpu_lb:
print_line("{}{} = MEM_B({:#X}, {}{})", ctx_gpr_prefix(rt), rt, (int16_t)imm, ctx_gpr_prefix(base), base);
break;
case InstrId::cpu_lhu:
print_line("{}{} = MEM_HU({:#X}, {}{})", ctx_gpr_prefix(rt), rt, (int16_t)imm, ctx_gpr_prefix(base), base);
break;
case InstrId::cpu_lbu:
print_line("{}{} = MEM_BU({:#X}, {}{})", ctx_gpr_prefix(rt), rt, (int16_t)imm, ctx_gpr_prefix(base), base);
break;
// Stores
case InstrId::cpu_sw:
print_line("MEM_W({:#X}, {}{}) = {}{}", (int16_t)imm, ctx_gpr_prefix(base), base, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_sh:
print_line("MEM_H({:#X}, {}{}) = {}{}", (int16_t)imm, ctx_gpr_prefix(base), base, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_sb:
print_line("MEM_B({:#X}, {}{}) = {}{}", (int16_t)imm, ctx_gpr_prefix(base), base, ctx_gpr_prefix(rt), rt);
break;
// TODO lwl, lwr
// examples:
// reg = 11111111 01234567
// mem @ x = 89ABCDEF
// LWL x + 0 -> FFFFFFFF 89ABCDEF
// LWL x + 1 -> FFFFFFFF ABCDEF67
// LWL x + 2 -> FFFFFFFF CDEF4567
// LWL x + 3 -> FFFFFFFF EF234567
// LWR x + 0 -> 00000000 01234589
// LWR x + 1 -> 00000000 012389AB
// LWR x + 2 -> 00000000 0189ABCD
// LWR x + 3 -> FFFFFFFF 89ABCDEF
case InstrId::cpu_lwl:
print_line("{}{} = MEM_WL({:#X}, {}{})", ctx_gpr_prefix(rt), rt, (int16_t)imm, ctx_gpr_prefix(base), base);
break;
case InstrId::cpu_lwr:
print_line("{}{} = MEM_WR({:#X}, {}{})", ctx_gpr_prefix(rt), rt, (int16_t)imm, ctx_gpr_prefix(base), base);
break;
case InstrId::cpu_swl:
print_line("MEM_WL({:#X}, {}{}) = {}{}", (int16_t)imm, ctx_gpr_prefix(base), base, ctx_gpr_prefix(rt), rt);
break;
case InstrId::cpu_swr:
print_line("MEM_WR({:#X}, {}{}) = {}{}", (int16_t)imm, ctx_gpr_prefix(base), base, ctx_gpr_prefix(rt), rt);
break;
// Branches
case InstrId::cpu_jal:
needs_link_branch = true;
print_indent();
// TODO lookup function name
print_branch("{}(rdram, ctx)", "func");
break;
case InstrId::cpu_jalr:
needs_link_branch = true;
print_indent();
// TODO index global function table
print_branch("{}(rdram, ctx)", "func_reg");
break;
case InstrId::cpu_j:
case InstrId::cpu_b:
print_indent();
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_jr:
print_indent();
if (rs == (int)rabbitizer::Registers::Cpu::GprO32::GPR_O32_ra) {
print_branch("return");
} else {
// TODO jump table handling
}
break;
case InstrId::cpu_bnel:
is_branch_likely = true;
[[fallthrough]];
case InstrId::cpu_bne:
print_indent();
print_branch_condition("if (S32({}{}) != S32({}{}))", ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_beql:
is_branch_likely = true;
[[fallthrough]];
case InstrId::cpu_beq:
print_indent();
print_branch_condition("if (S32({}{}) == S32({}{}))", ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_bnez:
print_indent();
print_branch_condition("if (S32({}{}) != 0)", ctx_gpr_prefix(rs), rs);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_beqz:
print_indent();
print_branch_condition("if (S32({}{}) == 0)", ctx_gpr_prefix(rs), rs);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_bgezl:
is_branch_likely = true;
[[fallthrough]];
case InstrId::cpu_bgez:
print_indent();
print_branch_condition("if (S32({}{}) >= 0)", ctx_gpr_prefix(rs), rs);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_bgtzl:
is_branch_likely = true;
[[fallthrough]];
case InstrId::cpu_bgtz:
print_indent();
print_branch_condition("if (S32({}{}) > 0)", ctx_gpr_prefix(rs), rs);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_blezl:
is_branch_likely = true;
[[fallthrough]];
case InstrId::cpu_blez:
print_indent();
print_branch_condition("if (S32({}{}) <= 0)", ctx_gpr_prefix(rs), rs);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_bltzl:
is_branch_likely = true;
[[fallthrough]];
case InstrId::cpu_bltz:
print_indent();
print_branch_condition("if (S32({}{}) < 0)", ctx_gpr_prefix(rs), rs);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_break:
print_line("do_break();");
break;
// Cop1 loads/stores
case InstrId::cpu_mtc1:
if ((fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.u32l = {}{}", fs, ctx_gpr_prefix(rt), rt);
}
else {
// odd fpr
print_line("ctx->f{}.u32h = {}{}", fs - 1, ctx_gpr_prefix(rt), rt);
}
break;
case InstrId::cpu_mfc1:
if ((fs & 1) == 0) {
// even fpr
print_line("{}{} = ctx->f{}.u32l", ctx_gpr_prefix(rt), rt, fs);
} else {
// odd fpr
print_line("{}{} = ctx->f{}.u32h", ctx_gpr_prefix(rt), rt, fs - 1);
}
break;
case InstrId::cpu_lwc1:
if ((ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.u32l = MEM_W({:#X}, {}{})", ft, (int16_t)imm, ctx_gpr_prefix(base), base);
} else {
// odd fpr
print_line("ctx->f{}.u32h = MEM_W({:#X}, {}{})", ft - 1, (int16_t)imm, ctx_gpr_prefix(base), base);
}
break;
case InstrId::cpu_ldc1:
if ((ft & 1) == 0) {
print_line("ctx->f{}.u64 = MEM_D({:#X}, {}{})", ft, (int16_t)imm, ctx_gpr_prefix(base), base);
} else {
fmt::print(stderr, "Invalid operand for ldc1: f{}\n", ft);
return false;
}
break;
case InstrId::cpu_swc1:
if ((ft & 1) == 0) {
// even fpr
print_line("MEM_W({:#X}, {}{}) = ctx->f{}.u32l", (int16_t)imm, ctx_gpr_prefix(base), base, ft);
} else {
// odd fpr
print_line("MEM_W({:#X}, {}{}) = ctx->f{}.u32h", (int16_t)imm, ctx_gpr_prefix(base), base, ft - 1);
}
break;
case InstrId::cpu_sdc1:
if ((ft & 1) == 0) {
print_line("MEM_D({:#X}, {}{}) = ctx->f{}.u64", (int16_t)imm, ctx_gpr_prefix(base), base, ft);
} else {
fmt::print(stderr, "Invalid operand for sdc1: f{}\n", ft);
return false;
}
break;
// Cop1 compares
case InstrId::cpu_c_lt_s:
if ((fs & 1) == 0 && (ft & 1) == 0) {
print_line("c1cs = ctx->f{}.fl <= ctx->f{}.fl", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.lt.s: f{} f{}\n", fs, ft);
return false;
}
break;
case InstrId::cpu_c_lt_d:
if ((fs & 1) == 0 && (ft & 1) == 0) {
print_line("c1cs = ctx->f{}.d <= ctx->f{}.d", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.lt.d: f{} f{}\n", fs, ft);
return false;
}
break;
case InstrId::cpu_c_le_s:
if ((fs & 1) == 0 && (ft & 1) == 0) {
print_line("c1cs = ctx->f{}.fl <= ctx->f{}.fl", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.le.s: f{} f{}\n", fs, ft);
return false;
}
break;
case InstrId::cpu_c_le_d:
if ((fs & 1) == 0 && (ft & 1) == 0) {
print_line("c1cs = ctx->f{}.d <= ctx->f{}.d", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.le.d: f{} f{}\n", fs, ft);
return false;
}
break;
case InstrId::cpu_c_eq_s:
if ((fs & 1) == 0 && (ft & 1) == 0) {
print_line("c1cs = ctx->f{}.fl == ctx->f{}.fl", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.eq.s: f{} f{}\n", fs, ft);
return false;
}
break;
case InstrId::cpu_c_eq_d:
if ((fs & 1) == 0 && (ft & 1) == 0) {
print_line("c1cs = ctx->f{}.d == ctx->f{}.d", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.eq.d: f{} f{}\n", fs, ft);
return false;
}
break;
// Cop1 branches
case InstrId::cpu_bc1tl:
is_branch_likely = true;
[[fallthrough]];
case InstrId::cpu_bc1t:
print_indent();
print_branch_condition("if (c1cs)", ctx_gpr_prefix(rs), rs);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
case InstrId::cpu_bc1fl:
is_branch_likely = true;
[[fallthrough]];
case InstrId::cpu_bc1f:
print_indent();
print_branch_condition("if (!c1cs)", ctx_gpr_prefix(rs), rs);
print_branch("goto L_{:08X}", (uint32_t)instr.getBranchVramGeneric());
break;
// Cop1 arithmetic
case InstrId::cpu_mov_s:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = ctx->f{}.fl", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for mov.s: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_mov_d:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = ctx->f{}.d", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for mov.d: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_neg_s:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = -ctx->f{}.fl", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for neg.s: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_neg_d:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = -ctx->f{}.d", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for neg.d: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_abs_s:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = fabsf(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for abs.s: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_abs_d:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = fabs(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for abs.d: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_sqrt_s:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = sqrtf(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for sqrt.s: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_sqrt_d:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = sqrt(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for sqrt.d: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_add_s:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = ctx->f{}.fl + ctx->f{}.fl", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for add.s: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break;
case InstrId::cpu_add_d:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = ctx->f{}.d + ctx->f{}.d", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for add.d: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break;
case InstrId::cpu_sub_s:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = ctx->f{}.fl - ctx->f{}.fl", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for sub.s: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break;
case InstrId::cpu_sub_d:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = ctx->f{}.d - ctx->f{}.d", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for sub.d: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break;
case InstrId::cpu_mul_s:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = MUL_S(ctx->f{}.fl, ctx->f{}.fl)", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for mul.s: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break;
case InstrId::cpu_mul_d:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = MUL_D(ctx->f{}.d, ctx->f{}.d)", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for mul.d: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break;
case InstrId::cpu_div_s:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = DIV_S(ctx->f{}.fl, ctx->f{}.fl)", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for div.s: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break;
case InstrId::cpu_div_d:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = DIV_D(ctx->f{}.d, ctx->f{}.d)", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for div.d: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break;
case InstrId::cpu_cvt_s_w:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = CVT_S_W(ctx->f{}.u32l)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.s.w: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_cvt_d_w:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = CVT_D_W(ctx->f{}.u32l)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.d.w: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_cvt_d_s:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.d = CVT_D_S(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.d.s: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_cvt_s_d:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.fl = CVT_S_D(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.s.d: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_trunc_w_s:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.u32l = TRUNC_W_S(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for trunc.w.s: f{} f{}\n", fd, fs);
return false;
}
break;
case InstrId::cpu_trunc_w_d:
if ((fd & 1) == 0 && (fs & 1) == 0) {
// even fpr
print_line("ctx->f{}.u32l = TRUNC_W_D(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for trunc.w.d: f{} f{}\n", fd, fs);
return false;
}
break;
default:
fmt::print(stderr, "Unhandled instruction: {}\n", instr.getOpcodeName());
return false;
}
if (emit_link_branch) {
fmt::print(output_file, " after_{}:\n", link_branch_index);
}
return true;
}
bool RecompPort::recompile_function(const RecompPort::Function& func, std::string_view output_path) {
fmt::print("Recompiling {}\n", func.name);
std::vector<rabbitizer::InstructionCpu> instructions;
// Open the output file and write the file header
std::ofstream output_file{ output_path.data() };
fmt::print(output_file,
"#include \"recomp.h\"\n"
"\n"
"void {}(uint8_t* restrict rdram, recomp_context* restrict ctx) {{\n"
// these variables shouldn't need to be preserved across function boundaries, so make them local for more efficient output
" uint64_t hi = 0, lo = 0;\n"
" int c1cs = 0; \n", // cop1 conditional signal
func.name);
// Use a set to sort and deduplicate labels
std::set<uint32_t> branch_labels;
instructions.reserve(func.words.size());
// First pass, disassemble each instruction and collect branch labels
uint32_t vram = func.vram;
for (uint32_t word : func.words) {
const auto& instr = instructions.emplace_back(byteswap(word), vram);
// If this is a branch or a direct jump, add it to the local label list
if (instr.isBranch() || instr.getUniqueId() == rabbitizer::InstrId::UniqueId::cpu_j) {
branch_labels.insert((uint32_t)instr.getBranchVramGeneric());
}
// Advance the vram address by the size of one instruction
vram += 4;
}
// Second pass, emit code for each instruction and emit labels
auto cur_label = branch_labels.cbegin();
vram = func.vram;
int num_link_branches = 0;
int num_likely_branches = 0;
bool needs_link_branch = false;
bool in_likely_delay_slot = false;
for (size_t instr_index = 0; instr_index < instructions.size(); ++instr_index) {
bool had_link_branch = needs_link_branch;
bool is_branch_likely = false;
// If we're in the delay slot of a likely instruction, emit a goto to skip the instruction before any labels
if (in_likely_delay_slot) {
fmt::print(output_file, " goto skip_{};\n", num_likely_branches);
}
// If there are any other branch labels to insert and we're at the next one, insert it
if (cur_label != branch_labels.end() && vram >= *cur_label) {
fmt::print(output_file, "L_{:08X}:\n", *cur_label);
++cur_label;
}
// Process the current instruction and check for errors
if (process_instruction(instr_index, instructions, output_file, false, needs_link_branch, num_link_branches, needs_link_branch, is_branch_likely) == false) {
fmt::print(stderr, "Error in recompilation, clearing {}\n", output_path);
output_file.clear();
return false;
}
// If a link return branch was generated, advance the number of link return branches
if (had_link_branch) {
num_link_branches++;
}
// Now that the instruction has been processed, emit a skip label for the likely branch if needed
if (in_likely_delay_slot) {
fmt::print(output_file, " skip_{}:\n", num_likely_branches);
num_likely_branches++;
}
// Mark the next instruction as being in a likely delay slot if the
in_likely_delay_slot = is_branch_likely;
// Advance the vram address by the size of one instruction
vram += 4;
}
// Terminate the function
fmt::print(output_file, "}}\n");
return true;
}