mirror of
https://github.com/N64Recomp/N64Recomp.git
synced 2025-05-28 06:13:16 +00:00
Integrated SDL2 and switch to a test rom, fixed some issues in recompilation
This commit is contained in:
parent
d0c3eb73ec
commit
aad1bac933
15 changed files with 5590 additions and 7515 deletions
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
@ -3,8 +3,10 @@
|
|||
#include <chrono>
|
||||
#include <cinttypes>
|
||||
#include <variant>
|
||||
#include <unordered_map>
|
||||
|
||||
#include <Windows.h>
|
||||
#include "SDL.h"
|
||||
#include "blockingconcurrentqueue.h"
|
||||
|
||||
#include "ultra64.h"
|
||||
|
@ -85,7 +87,7 @@ extern "C" void osViSetEvent(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, u32 ret
|
|||
events_context.vi.retrace_count = retrace_count;
|
||||
}
|
||||
|
||||
constexpr uint32_t speed_multiplier = 10;
|
||||
constexpr uint32_t speed_multiplier = 1;
|
||||
|
||||
// N64 CPU counter ticks per millisecond
|
||||
constexpr uint32_t counter_per_ms = 46'875 * speed_multiplier;
|
||||
|
@ -176,11 +178,57 @@ void dp_complete() {
|
|||
void RT64Init(uint8_t* rom, uint8_t* rdram);
|
||||
void RT64SendDL(uint8_t* rdram, const OSTask* task);
|
||||
void RT64UpdateScreen(uint32_t vi_origin);
|
||||
void RT64PumpEvents();
|
||||
|
||||
std::unordered_map<SDL_Scancode, int> button_map{
|
||||
{ SDL_Scancode::SDL_SCANCODE_LEFT, 0x0002 },
|
||||
{ SDL_Scancode::SDL_SCANCODE_RIGHT, 0x0001 },
|
||||
{ SDL_Scancode::SDL_SCANCODE_UP, 0x0008 },
|
||||
{ SDL_Scancode::SDL_SCANCODE_DOWN, 0x0004 }
|
||||
};
|
||||
|
||||
extern int button;
|
||||
extern int stick_x;
|
||||
extern int stick_y;
|
||||
|
||||
int sdl_event_filter(void* userdata, SDL_Event* event) {
|
||||
switch (event->type) {
|
||||
case SDL_EventType::SDL_KEYUP:
|
||||
case SDL_EventType::SDL_KEYDOWN:
|
||||
{
|
||||
const Uint8* key_states = SDL_GetKeyboardState(nullptr);
|
||||
int new_button = 0;
|
||||
|
||||
for (const auto& mapping : button_map) {
|
||||
if (key_states[mapping.first]) {
|
||||
new_button |= mapping.second;
|
||||
}
|
||||
}
|
||||
|
||||
button = new_button;
|
||||
|
||||
stick_x = 127 * (key_states[SDL_Scancode::SDL_SCANCODE_D] - key_states[SDL_Scancode::SDL_SCANCODE_A]);
|
||||
stick_y = 127 * (key_states[SDL_Scancode::SDL_SCANCODE_W] - key_states[SDL_Scancode::SDL_SCANCODE_S]);
|
||||
}
|
||||
break;
|
||||
case SDL_EventType::SDL_QUIT:
|
||||
std::quick_exit(ERROR_SUCCESS);
|
||||
break;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void gfx_thread_func(uint8_t* rdram, uint8_t* rom) {
|
||||
using namespace std::chrono_literals;
|
||||
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_JOYSTICK) < 0) {
|
||||
fprintf(stderr, "Failed to initialize SDL2: %s\n", SDL_GetError());
|
||||
std::quick_exit(EXIT_FAILURE);
|
||||
}
|
||||
RT64Init(rom, rdram);
|
||||
SDL_Window* window = SDL_GetWindowFromID(1);
|
||||
// TODO set this window title in RT64, create the window here and send it to RT64, or something else entirely
|
||||
// as the current window name visibly changes as RT64 is initialized
|
||||
SDL_SetWindowTitle(window, "Recomp");
|
||||
SDL_SetEventFilter(sdl_event_filter, nullptr);
|
||||
|
||||
while (true) {
|
||||
// Try to pull an action from the queue
|
||||
|
@ -205,7 +253,7 @@ void gfx_thread_func(uint8_t* rdram, uint8_t* rom) {
|
|||
}
|
||||
|
||||
// Handle events
|
||||
RT64PumpEvents();
|
||||
SDL_PumpEvents();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -16,15 +16,27 @@ struct OSContPad {
|
|||
u8 errno_;
|
||||
};
|
||||
|
||||
int button = 0;
|
||||
int stick_x = 0;
|
||||
int stick_y = 0;
|
||||
|
||||
void press_button(int button) {
|
||||
|
||||
}
|
||||
|
||||
void release_button(int button) {
|
||||
|
||||
}
|
||||
|
||||
extern "C" void osContGetReadData_recomp(uint8_t* restrict rdram, recomp_context* restrict ctx) {
|
||||
int32_t pad = (uint32_t)ctx->r4;
|
||||
|
||||
// button
|
||||
MEM_H(0, pad) = 0;
|
||||
MEM_H(0, pad) = button;
|
||||
// stick_x
|
||||
MEM_B(2, pad) = 0;
|
||||
MEM_B(2, pad) = stick_x;
|
||||
// stick_y
|
||||
MEM_B(3, pad) = 0;
|
||||
MEM_B(3, pad) = stick_y;
|
||||
// errno
|
||||
MEM_B(4, pad) = 0;
|
||||
}
|
||||
|
|
|
@ -41,3 +41,7 @@ extern "C" void __osDisableInt_recomp(uint8_t* restrict rdram, recomp_context* r
|
|||
extern "C" void __osRestoreInt_recomp(uint8_t* restrict rdram, recomp_context* restrict ctx) {
|
||||
;
|
||||
}
|
||||
|
||||
extern "C" void __osSetFpcCsr_recomp(uint8_t * restrict rdram, recomp_context * restrict ctx) {
|
||||
ctx->r2 = 0;
|
||||
}
|
||||
|
|
|
@ -16,7 +16,7 @@ extern "C" void osCreatePiManager_recomp(uint8_t* restrict rdram, recomp_context
|
|||
|
||||
constexpr uint32_t rom_base = 0xB0000000;
|
||||
|
||||
void do_rom_read(uint8_t* rdram, int32_t ram_address, uint32_t dev_address, size_t num_bytes) {
|
||||
void do_rom_read(uint8_t* rdram, gpr ram_address, uint32_t dev_address, size_t num_bytes) {
|
||||
// TODO use word copies when possible
|
||||
uint8_t* rom_addr = rom.get() + (dev_address | rom_base) - rom_base;
|
||||
for (size_t i = 0; i < num_bytes; i++) {
|
||||
|
@ -30,10 +30,9 @@ extern "C" void osPiStartDma_recomp(uint8_t* restrict rdram, recomp_context* res
|
|||
uint32_t pri = ctx->r5;
|
||||
uint32_t direction = ctx->r6;
|
||||
uint32_t devAddr = ctx->r7;
|
||||
int32_t dramAddr = MEM_W(0x10, ctx->r29);
|
||||
gpr dramAddr = MEM_W(0x10, ctx->r29);
|
||||
uint32_t size = MEM_W(0x14, ctx->r29);
|
||||
uint32_t mq_ = MEM_W(0x18, ctx->r29);
|
||||
OSMesgQueue* mq = TO_PTR(OSMesgQueue, mq_);
|
||||
PTR(OSMesgQueue) mq = MEM_W(0x18, ctx->r29);
|
||||
|
||||
debug_printf("[pi] DMA from 0x%08X into 0x%08X of size 0x%08X\n", devAddr, dramAddr, size);
|
||||
|
||||
|
@ -44,11 +43,43 @@ extern "C" void osPiStartDma_recomp(uint8_t* restrict rdram, recomp_context* res
|
|||
//memcpy(rdram + (dramAddr & 0x3FFFFFF), rom.get() + (devAddr | rom_base) - rom_base, num_bytes);
|
||||
|
||||
// Send a message to the mq to indicate that the transfer completed
|
||||
osSendMesg(rdram, mq_, 0, OS_MESG_NOBLOCK);
|
||||
osSendMesg(rdram, mq, 0, OS_MESG_NOBLOCK);
|
||||
}
|
||||
|
||||
struct OSIoMesgHdr {
|
||||
// These 3 reversed due to endianness
|
||||
u8 status; /* Return status */
|
||||
u8 pri; /* Message priority (High or Normal) */
|
||||
u16 type; /* Message type */
|
||||
PTR(OSMesgQueue) retQueue; /* Return message queue to notify I/O completion */
|
||||
};
|
||||
|
||||
struct OSIoMesg {
|
||||
OSIoMesgHdr hdr; /* Message header */
|
||||
PTR(void) dramAddr; /* RDRAM buffer address (DMA) */
|
||||
u32 devAddr; /* Device buffer address (DMA) */
|
||||
u32 size; /* DMA transfer size in bytes */
|
||||
u32 piHandle; /* PI device handle */
|
||||
};
|
||||
|
||||
extern "C" void osEPiStartDma_recomp(uint8_t* restrict rdram, recomp_context* restrict ctx) {
|
||||
;
|
||||
OSIoMesg* mb = TO_PTR(OSIoMesg, ctx->r5);
|
||||
uint32_t direction = ctx->r6;
|
||||
uint32_t devAddr = mb->devAddr;
|
||||
gpr dramAddr = mb->dramAddr;
|
||||
uint32_t size = mb->size;
|
||||
PTR(OSMesgQueue) mq = mb->hdr.retQueue;
|
||||
|
||||
debug_printf("[pi] DMA from 0x%08X into 0x%08X of size 0x%08X\n", devAddr, dramAddr, size);
|
||||
|
||||
// TODO asynchronous transfer (will require preemption in the scheduler)
|
||||
// TODO this won't handle unaligned DMA
|
||||
do_rom_read(rdram, dramAddr, devAddr, size);
|
||||
|
||||
//memcpy(rdram + (dramAddr & 0x3FFFFFF), rom.get() + (devAddr | rom_base) - rom_base, num_bytes);
|
||||
|
||||
// Send a message to the mq to indicate that the transfer completed
|
||||
osSendMesg(rdram, mq, 0, OS_MESG_NOBLOCK);
|
||||
}
|
||||
|
||||
extern "C" void osPiGetStatus_recomp(uint8_t * restrict rdram, recomp_context * restrict ctx) {
|
||||
|
|
|
@ -5,6 +5,10 @@ extern "C" void osInitialize_recomp(uint8_t * restrict rdram, recomp_context * r
|
|||
osInitialize();
|
||||
}
|
||||
|
||||
extern "C" void __osInitialize_common_recomp(uint8_t * restrict rdram, recomp_context * restrict ctx) {
|
||||
osInitialize();
|
||||
}
|
||||
|
||||
extern "C" void osCreateThread_recomp(uint8_t* restrict rdram, recomp_context* restrict ctx) {
|
||||
osCreateThread(rdram, (uint32_t)ctx->r4, (OSId)ctx->r5, (uint32_t)ctx->r6, (uint32_t)ctx->r7,
|
||||
(uint32_t)MEM_W(0x10, ctx->r29), (OSPri)MEM_W(0x14, ctx->r29));
|
||||
|
|
|
@ -61,8 +61,12 @@ void run_thread_function(uint8_t* rdram, uint64_t addr, uint64_t sp, uint64_t ar
|
|||
func(rdram, &ctx);
|
||||
}
|
||||
|
||||
extern "C" void game_init(uint8_t* restrict rdram, recomp_context* restrict ctx);
|
||||
void do_rom_read(uint8_t* rdram, int32_t ram_address, uint32_t dev_address, size_t num_bytes);
|
||||
extern "C" void init(uint8_t * restrict rdram, recomp_context * restrict ctx);
|
||||
|
||||
// rocket robot
|
||||
//extern "C" void game_init(uint8_t* restrict rdram, recomp_context* restrict ctx);
|
||||
// test rom
|
||||
void do_rom_read(uint8_t* rdram, gpr ram_address, uint32_t dev_address, size_t num_bytes);
|
||||
|
||||
std::unique_ptr<uint8_t[]> rom;
|
||||
size_t rom_size;
|
||||
|
@ -105,7 +109,7 @@ int main(int argc, char **argv) {
|
|||
|
||||
// Get entrypoint from ROM
|
||||
// TODO fix this for other IPL3 versions
|
||||
int32_t entrypoint = byteswap(*reinterpret_cast<uint32_t*>(rom.get() + 0x8));
|
||||
gpr entrypoint = (int32_t)byteswap(*reinterpret_cast<uint32_t*>(rom.get() + 0x8));
|
||||
|
||||
// Allocate rdram_buffer
|
||||
std::unique_ptr<uint8_t[]> rdram_buffer = std::make_unique<uint8_t[]>(8 * 1024 * 1024);
|
||||
|
@ -153,13 +157,19 @@ int main(int argc, char **argv) {
|
|||
|
||||
// Clear bss
|
||||
// TODO run the entrypoint instead
|
||||
memset(rdram_buffer.get() + 0XAF860, 0, 0xC00A0u - 0XAF860);
|
||||
// rocket robot
|
||||
//memset(rdram_buffer.get() + 0xAF860, 0, 0xC00A0u - 0XAF860);
|
||||
// test rom
|
||||
memset(rdram_buffer.get() + 0x18670, 0, 0x20D120);
|
||||
|
||||
debug_printf("[Recomp] Starting\n");
|
||||
|
||||
Multilibultra::preinit(rdram_buffer.get(), rom.get());
|
||||
|
||||
game_init(rdram_buffer.get(), &context);
|
||||
// rocket robot
|
||||
// game_init(rdram_buffer.get(), &context);
|
||||
// test rom
|
||||
init(rdram_buffer.get(), &context);
|
||||
|
||||
debug_printf("[Recomp] Quitting\n");
|
||||
|
||||
|
|
582
test/thirdparty/blockingconcurrentqueue.h
vendored
Normal file
582
test/thirdparty/blockingconcurrentqueue.h
vendored
Normal file
|
@ -0,0 +1,582 @@
|
|||
// Provides an efficient blocking version of moodycamel::ConcurrentQueue.
|
||||
// ©2015-2020 Cameron Desrochers. Distributed under the terms of the simplified
|
||||
// BSD license, available at the top of concurrentqueue.h.
|
||||
// Also dual-licensed under the Boost Software License (see LICENSE.md)
|
||||
// Uses Jeff Preshing's semaphore implementation (under the terms of its
|
||||
// separate zlib license, see lightweightsemaphore.h).
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "concurrentqueue.h"
|
||||
#include "lightweightsemaphore.h"
|
||||
|
||||
#include <type_traits>
|
||||
#include <cerrno>
|
||||
#include <memory>
|
||||
#include <chrono>
|
||||
#include <ctime>
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
// This is a blocking version of the queue. It has an almost identical interface to
|
||||
// the normal non-blocking version, with the addition of various wait_dequeue() methods
|
||||
// and the removal of producer-specific dequeue methods.
|
||||
template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
|
||||
class BlockingConcurrentQueue
|
||||
{
|
||||
private:
|
||||
typedef ::moodycamel::ConcurrentQueue<T, Traits> ConcurrentQueue;
|
||||
typedef ::moodycamel::LightweightSemaphore LightweightSemaphore;
|
||||
|
||||
public:
|
||||
typedef typename ConcurrentQueue::producer_token_t producer_token_t;
|
||||
typedef typename ConcurrentQueue::consumer_token_t consumer_token_t;
|
||||
|
||||
typedef typename ConcurrentQueue::index_t index_t;
|
||||
typedef typename ConcurrentQueue::size_t size_t;
|
||||
typedef typename std::make_signed<size_t>::type ssize_t;
|
||||
|
||||
static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE;
|
||||
static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD;
|
||||
static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE;
|
||||
static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE;
|
||||
static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE;
|
||||
static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE;
|
||||
static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE;
|
||||
|
||||
public:
|
||||
// Creates a queue with at least `capacity` element slots; note that the
|
||||
// actual number of elements that can be inserted without additional memory
|
||||
// allocation depends on the number of producers and the block size (e.g. if
|
||||
// the block size is equal to `capacity`, only a single block will be allocated
|
||||
// up-front, which means only a single producer will be able to enqueue elements
|
||||
// without an extra allocation -- blocks aren't shared between producers).
|
||||
// This method is not thread safe -- it is up to the user to ensure that the
|
||||
// queue is fully constructed before it starts being used by other threads (this
|
||||
// includes making the memory effects of construction visible, possibly with a
|
||||
// memory barrier).
|
||||
explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE)
|
||||
: inner(capacity), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||
{
|
||||
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||
if (!sema) {
|
||||
MOODYCAMEL_THROW(std::bad_alloc());
|
||||
}
|
||||
}
|
||||
|
||||
BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers)
|
||||
: inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||
{
|
||||
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||
if (!sema) {
|
||||
MOODYCAMEL_THROW(std::bad_alloc());
|
||||
}
|
||||
}
|
||||
|
||||
// Disable copying and copy assignment
|
||||
BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||
BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
// Moving is supported, but note that it is *not* a thread-safe operation.
|
||||
// Nobody can use the queue while it's being moved, and the memory effects
|
||||
// of that move must be propagated to other threads before they can use it.
|
||||
// Note: When a queue is moved, its tokens are still valid but can only be
|
||||
// used with the destination queue (i.e. semantically they are moved along
|
||||
// with the queue itself).
|
||||
BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||
: inner(std::move(other.inner)), sema(std::move(other.sema))
|
||||
{ }
|
||||
|
||||
inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
return swap_internal(other);
|
||||
}
|
||||
|
||||
// Swaps this queue's state with the other's. Not thread-safe.
|
||||
// Swapping two queues does not invalidate their tokens, however
|
||||
// the tokens that were created for one queue must be used with
|
||||
// only the swapped queue (i.e. the tokens are tied to the
|
||||
// queue's movable state, not the object itself).
|
||||
inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
swap_internal(other);
|
||||
}
|
||||
|
||||
private:
|
||||
BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other)
|
||||
{
|
||||
if (this == &other) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
inner.swap(other.inner);
|
||||
sema.swap(other.sema);
|
||||
return *this;
|
||||
}
|
||||
|
||||
public:
|
||||
// Enqueues a single item (by copying it).
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(T const& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible).
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(T&& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(std::move(item)))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(producer_token_t const& token, T const& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(token, item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(producer_token_t const& token, T&& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(token, std::move(item)))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||
// is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool enqueue_bulk(It itemFirst, size_t count)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue_bulk(std::forward<It>(itemFirst), count))) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails
|
||||
// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue_bulk(token, std::forward<It>(itemFirst), count))) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it).
|
||||
// Does not allocate memory. Fails if not enough room to enqueue (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||
// is 0).
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(T const& item)
|
||||
{
|
||||
if (inner.try_enqueue(item)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible).
|
||||
// Does not allocate memory (except for one-time implicit producer).
|
||||
// Fails if not enough room to enqueue (or implicit production is
|
||||
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(T&& item)
|
||||
{
|
||||
if (inner.try_enqueue(std::move(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(producer_token_t const& token, T const& item)
|
||||
{
|
||||
if (inner.try_enqueue(token, item)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(producer_token_t const& token, T&& item)
|
||||
{
|
||||
if (inner.try_enqueue(token, std::move(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items.
|
||||
// Does not allocate memory (except for one-time implicit producer).
|
||||
// Fails if not enough room to enqueue (or implicit production is
|
||||
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool try_enqueue_bulk(It itemFirst, size_t count)
|
||||
{
|
||||
if (inner.try_enqueue_bulk(std::forward<It>(itemFirst), count)) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||
{
|
||||
if (inner.try_enqueue_bulk(token, std::forward<It>(itemFirst), count)) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue from the queue.
|
||||
// Returns false if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool try_dequeue(U& item)
|
||||
{
|
||||
if (sema->tryWait()) {
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Attempts to dequeue from the queue using an explicit consumer token.
|
||||
// Returns false if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool try_dequeue(consumer_token_t& token, U& item)
|
||||
{
|
||||
if (sema->tryWait()) {
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued.
|
||||
// Returns 0 if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t try_dequeue_bulk(It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued.
|
||||
// Returns 0 if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Blocks the current thread until there's something to dequeue, then
|
||||
// dequeues it.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline void wait_dequeue(U& item)
|
||||
{
|
||||
while (!sema->wait()) {
|
||||
continue;
|
||||
}
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout (specified in microseconds) expires. Returns false
|
||||
// without setting `item` if the timeout expires, otherwise assigns
|
||||
// to `item` and returns true.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs)
|
||||
{
|
||||
if (!sema->wait(timeout_usecs)) {
|
||||
return false;
|
||||
}
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout expires. Returns false without setting `item` if the
|
||||
// timeout expires, otherwise assigns to `item` and returns true.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Blocks the current thread until there's something to dequeue, then
|
||||
// dequeues it using an explicit consumer token.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline void wait_dequeue(consumer_token_t& token, U& item)
|
||||
{
|
||||
while (!sema->wait()) {
|
||||
continue;
|
||||
}
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout (specified in microseconds) expires. Returns false
|
||||
// without setting `item` if the timeout expires, otherwise assigns
|
||||
// to `item` and returns true.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs)
|
||||
{
|
||||
if (!sema->wait(timeout_usecs)) {
|
||||
return false;
|
||||
}
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout expires. Returns false without setting `item` if the
|
||||
// timeout expires, otherwise assigns to `item` and returns true.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_timed(token, item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which will
|
||||
// always be at least one (this method blocks until the queue
|
||||
// is non-empty) and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk(It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It, typename Rep, typename Period>
|
||||
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_bulk_timed<It&>(itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which will
|
||||
// always be at least one (this method blocks until the queue
|
||||
// is non-empty) and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It, typename Rep, typename Period>
|
||||
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_bulk_timed<It&>(token, itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
|
||||
// Returns an estimate of the total number of elements currently in the queue. This
|
||||
// estimate is only accurate if the queue has completely stabilized before it is called
|
||||
// (i.e. all enqueue and dequeue operations have completed and their memory effects are
|
||||
// visible on the calling thread, and no further operations start while this method is
|
||||
// being called).
|
||||
// Thread-safe.
|
||||
inline size_t size_approx() const
|
||||
{
|
||||
return (size_t)sema->availableApprox();
|
||||
}
|
||||
|
||||
|
||||
// Returns true if the underlying atomic variables used by
|
||||
// the queue are lock-free (they should be on most platforms).
|
||||
// Thread-safe.
|
||||
static constexpr bool is_lock_free()
|
||||
{
|
||||
return ConcurrentQueue::is_lock_free();
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
template<typename U, typename A1, typename A2>
|
||||
static inline U* create(A1&& a1, A2&& a2)
|
||||
{
|
||||
void* p = (Traits::malloc)(sizeof(U));
|
||||
return p != nullptr ? new (p) U(std::forward<A1>(a1), std::forward<A2>(a2)) : nullptr;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
static inline void destroy(U* p)
|
||||
{
|
||||
if (p != nullptr) {
|
||||
p->~U();
|
||||
}
|
||||
(Traits::free)(p);
|
||||
}
|
||||
|
||||
private:
|
||||
ConcurrentQueue inner;
|
||||
std::unique_ptr<LightweightSemaphore, void (*)(LightweightSemaphore*)> sema;
|
||||
};
|
||||
|
||||
|
||||
template<typename T, typename Traits>
|
||||
inline void swap(BlockingConcurrentQueue<T, Traits>& a, BlockingConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
a.swap(b);
|
||||
}
|
||||
|
||||
} // end namespace moodycamel
|
3747
test/thirdparty/concurrentqueue.h
vendored
Normal file
3747
test/thirdparty/concurrentqueue.h
vendored
Normal file
File diff suppressed because it is too large
Load diff
425
test/thirdparty/lightweightsemaphore.h
vendored
Normal file
425
test/thirdparty/lightweightsemaphore.h
vendored
Normal file
|
@ -0,0 +1,425 @@
|
|||
// Provides an efficient implementation of a semaphore (LightweightSemaphore).
|
||||
// This is an extension of Jeff Preshing's sempahore implementation (licensed
|
||||
// under the terms of its separate zlib license) that has been adapted and
|
||||
// extended by Cameron Desrochers.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // For std::size_t
|
||||
#include <atomic>
|
||||
#include <type_traits> // For std::make_signed<T>
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Avoid including windows.h in a header; we only need a handful of
|
||||
// items, so we'll redeclare them here (this is relatively safe since
|
||||
// the API generally has to remain stable between Windows versions).
|
||||
// I know this is an ugly hack but it still beats polluting the global
|
||||
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||
extern "C" {
|
||||
struct _SECURITY_ATTRIBUTES;
|
||||
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
|
||||
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
|
||||
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
|
||||
}
|
||||
#elif defined(__MACH__)
|
||||
#include <mach/mach.h>
|
||||
#elif defined(__unix__)
|
||||
#include <semaphore.h>
|
||||
|
||||
#if defined(__GLIBC_PREREQ) && defined(_GNU_SOURCE)
|
||||
#if __GLIBC_PREREQ(2,30)
|
||||
#define MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
namespace details
|
||||
{
|
||||
|
||||
// Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's
|
||||
// portable + lightweight semaphore implementations, originally from
|
||||
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||
// LICENSE:
|
||||
// Copyright (c) 2015 Jeff Preshing
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
//
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
//
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgement in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
#if defined(_WIN32)
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
void* m_hSema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
const long maxLong = 0x7fffffff;
|
||||
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||
assert(m_hSema);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
CloseHandle(m_hSema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
const unsigned long infinite = 0xffffffff;
|
||||
return WaitForSingleObject(m_hSema, infinite) == 0;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return WaitForSingleObject(m_hSema, 0) == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0;
|
||||
}
|
||||
|
||||
void signal(int count = 1)
|
||||
{
|
||||
while (!ReleaseSemaphore(m_hSema, count, nullptr));
|
||||
}
|
||||
};
|
||||
#elif defined(__MACH__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (Apple iOS and OSX)
|
||||
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
semaphore_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
kern_return_t rc = semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||
assert(rc == KERN_SUCCESS);
|
||||
(void)rc;
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
semaphore_destroy(mach_task_self(), m_sema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
return semaphore_wait(m_sema) == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return timed_wait(0);
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t timeout_usecs)
|
||||
{
|
||||
mach_timespec_t ts;
|
||||
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
|
||||
ts.tv_nsec = static_cast<int>((timeout_usecs % 1000000) * 1000);
|
||||
|
||||
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||
return rc == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||
}
|
||||
}
|
||||
};
|
||||
#elif defined(__unix__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (POSIX, Linux)
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
sem_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
int rc = sem_init(&m_sema, 0, static_cast<unsigned int>(initialCount));
|
||||
assert(rc == 0);
|
||||
(void)rc;
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
sem_destroy(&m_sema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_wait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_trywait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
struct timespec ts;
|
||||
const int usecs_in_1_sec = 1000000;
|
||||
const int nsecs_in_1_sec = 1000000000;
|
||||
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||
#else
|
||||
clock_gettime(CLOCK_REALTIME, &ts);
|
||||
#endif
|
||||
ts.tv_sec += (time_t)(usecs / usecs_in_1_sec);
|
||||
ts.tv_nsec += (long)(usecs % usecs_in_1_sec) * 1000;
|
||||
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||
// so we have to clean things up before passing it in
|
||||
if (ts.tv_nsec >= nsecs_in_1_sec) {
|
||||
ts.tv_nsec -= nsecs_in_1_sec;
|
||||
++ts.tv_sec;
|
||||
}
|
||||
|
||||
int rc;
|
||||
do {
|
||||
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||
rc = sem_clockwait(&m_sema, CLOCK_MONOTONIC, &ts);
|
||||
#else
|
||||
rc = sem_timedwait(&m_sema, &ts);
|
||||
#endif
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
while (sem_post(&m_sema) == -1);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
while (sem_post(&m_sema) == -1);
|
||||
}
|
||||
}
|
||||
};
|
||||
#else
|
||||
#error Unsupported platform! (No semaphore wrapper available)
|
||||
#endif
|
||||
|
||||
} // end namespace details
|
||||
|
||||
|
||||
//---------------------------------------------------------
|
||||
// LightweightSemaphore
|
||||
//---------------------------------------------------------
|
||||
class LightweightSemaphore
|
||||
{
|
||||
public:
|
||||
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||
|
||||
private:
|
||||
std::atomic<ssize_t> m_count;
|
||||
details::Semaphore m_sema;
|
||||
int m_maxSpins;
|
||||
|
||||
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
ssize_t oldCount;
|
||||
int spin = m_maxSpins;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_relaxed);
|
||||
if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return true;
|
||||
std::atomic_signal_fence(std::memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||
}
|
||||
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||
if (oldCount > 0)
|
||||
return true;
|
||||
if (timeout_usecs < 0)
|
||||
{
|
||||
if (m_sema.wait())
|
||||
return true;
|
||||
}
|
||||
if (timeout_usecs > 0 && m_sema.timed_wait((std::uint64_t)timeout_usecs))
|
||||
return true;
|
||||
// At this point, we've timed out waiting for the semaphore, but the
|
||||
// count is still decremented indicating we may still be waiting on
|
||||
// it. So we have to re-adjust the count, but only if the semaphore
|
||||
// wasn't signaled enough times for us too since then. If it was, we
|
||||
// need to release the semaphore too.
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_acquire);
|
||||
if (oldCount >= 0 && m_sema.try_wait())
|
||||
return true;
|
||||
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
assert(max > 0);
|
||||
ssize_t oldCount;
|
||||
int spin = m_maxSpins;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_relaxed);
|
||||
if (oldCount > 0)
|
||||
{
|
||||
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||
if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return oldCount - newCount;
|
||||
}
|
||||
std::atomic_signal_fence(std::memory_order_acquire);
|
||||
}
|
||||
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||
if (oldCount <= 0)
|
||||
{
|
||||
if ((timeout_usecs == 0) || (timeout_usecs < 0 && !m_sema.wait()) || (timeout_usecs > 0 && !m_sema.timed_wait((std::uint64_t)timeout_usecs)))
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_acquire);
|
||||
if (oldCount >= 0 && m_sema.try_wait())
|
||||
break;
|
||||
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (max > 1)
|
||||
return 1 + tryWaitMany(max - 1);
|
||||
return 1;
|
||||
}
|
||||
|
||||
public:
|
||||
LightweightSemaphore(ssize_t initialCount = 0, int maxSpins = 10000) : m_count(initialCount), m_maxSpins(maxSpins)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
assert(maxSpins >= 0);
|
||||
}
|
||||
|
||||
bool tryWait()
|
||||
{
|
||||
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||
while (oldCount > 0)
|
||||
{
|
||||
if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning();
|
||||
}
|
||||
|
||||
bool wait(std::int64_t timeout_usecs)
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||
}
|
||||
|
||||
// Acquires between 0 and (greedily) max, inclusive
|
||||
ssize_t tryWaitMany(ssize_t max)
|
||||
{
|
||||
assert(max >= 0);
|
||||
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||
while (oldCount > 0)
|
||||
{
|
||||
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||
if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return oldCount - newCount;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Acquires at least one, and (greedily) at most max
|
||||
ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
assert(max >= 0);
|
||||
ssize_t result = tryWaitMany(max);
|
||||
if (result == 0 && max > 0)
|
||||
result = waitManyWithPartialSpinning(max, timeout_usecs);
|
||||
return result;
|
||||
}
|
||||
|
||||
ssize_t waitMany(ssize_t max)
|
||||
{
|
||||
ssize_t result = waitMany(max, -1);
|
||||
assert(result > 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
void signal(ssize_t count = 1)
|
||||
{
|
||||
assert(count >= 0);
|
||||
ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release);
|
||||
ssize_t toRelease = -oldCount < count ? -oldCount : count;
|
||||
if (toRelease > 0)
|
||||
{
|
||||
m_sema.signal((int)toRelease);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t availableApprox() const
|
||||
{
|
||||
ssize_t count = m_count.load(std::memory_order_relaxed);
|
||||
return count > 0 ? static_cast<std::size_t>(count) : 0;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
Loading…
Add table
Add a link
Reference in a new issue