mirror of
https://github.com/N64Recomp/N64Recomp.git
synced 2025-05-30 23:33:15 +00:00
More libultra function implementations, euc-jp decoding for print output, improved build times for output project
This commit is contained in:
parent
c6de2b6189
commit
d2603ce07c
26 changed files with 30090 additions and 238 deletions
187
test/portultra/timer.cpp
Normal file
187
test/portultra/timer.cpp
Normal file
|
@ -0,0 +1,187 @@
|
|||
#include <thread>
|
||||
#include <variant>
|
||||
#include <set>
|
||||
#include "blockingconcurrentqueue.h"
|
||||
|
||||
#include "ultra64.h"
|
||||
#include "multilibultra.hpp"
|
||||
#include "recomp.h"
|
||||
|
||||
// Start time for the program
|
||||
static std::chrono::system_clock::time_point start = std::chrono::system_clock::now();
|
||||
// Game speed multiplier (1 means no speedup)
|
||||
constexpr uint32_t speed_multiplier = 1;
|
||||
// N64 CPU counter ticks per millisecond
|
||||
constexpr uint32_t counter_per_ms = 46'875 * speed_multiplier;
|
||||
|
||||
struct OSTimer {
|
||||
PTR(OSTimer) unused1;
|
||||
PTR(OSTimer) unused2;
|
||||
OSTime interval;
|
||||
OSTime timestamp;
|
||||
PTR(OSMesgQueue) mq;
|
||||
OSMesg msg;
|
||||
};
|
||||
|
||||
struct AddTimerAction {
|
||||
PTR(OSTask) timer;
|
||||
};
|
||||
|
||||
struct RemoveTimerAction {
|
||||
PTR(OSTimer) timer;
|
||||
};
|
||||
|
||||
using Action = std::variant<AddTimerAction, RemoveTimerAction>;
|
||||
|
||||
struct {
|
||||
std::thread thread;
|
||||
moodycamel::BlockingConcurrentQueue<Action> action_queue{};
|
||||
} timer_context;
|
||||
|
||||
uint64_t duration_to_ticks(std::chrono::system_clock::duration duration) {
|
||||
uint64_t delta_micros = std::chrono::duration_cast<std::chrono::microseconds>(duration).count();
|
||||
// More accurate than using a floating point timer, will only overflow after running for 12.47 years
|
||||
// Units: (micros * (counts/millis)) / (micros/millis) = counts
|
||||
uint64_t total_count = (delta_micros * counter_per_ms) / 1000;
|
||||
|
||||
return total_count;
|
||||
}
|
||||
|
||||
std::chrono::microseconds ticks_to_duration(uint64_t ticks) {
|
||||
using namespace std::chrono_literals;
|
||||
return ticks * 1000us / counter_per_ms;
|
||||
}
|
||||
|
||||
std::chrono::system_clock::time_point ticks_to_timepoint(uint64_t ticks) {
|
||||
return start + ticks_to_duration(ticks);
|
||||
}
|
||||
|
||||
uint64_t time_now() {
|
||||
return duration_to_ticks(std::chrono::system_clock::now() - start);
|
||||
}
|
||||
|
||||
void timer_thread(RDRAM_ARG1) {
|
||||
// Lambda comparator function to keep the set ordered
|
||||
auto timer_sort = [PASS_RDRAM1](PTR(OSTimer) a_, PTR(OSTimer) b_) {
|
||||
OSTimer* a = TO_PTR(OSTimer, a_);
|
||||
OSTimer* b = TO_PTR(OSTimer, b_);
|
||||
|
||||
// Order by timestamp if the timers have different timestamps
|
||||
if (a->timestamp != b->timestamp) {
|
||||
return a->timestamp < b->timestamp;
|
||||
}
|
||||
|
||||
// If they have the exact same timestamp then order by address instead
|
||||
return a < b;
|
||||
};
|
||||
|
||||
// Ordered set of timers that are currently active
|
||||
std::set<PTR(OSTimer), decltype(timer_sort)> active_timers{timer_sort};
|
||||
|
||||
// Lambda to process a timer action to handle adding and removing timers
|
||||
auto process_timer_action = [&](const Action& action) {
|
||||
// Determine the action type and act on it
|
||||
if (const auto* add_action = std::get_if<AddTimerAction>(&action)) {
|
||||
active_timers.insert(add_action->timer);
|
||||
} else if (const auto* remove_action = std::get_if<RemoveTimerAction>(&action)) {
|
||||
active_timers.erase(remove_action->timer);
|
||||
}
|
||||
};
|
||||
|
||||
while (true) {
|
||||
// Empty the action queue
|
||||
Action cur_action;
|
||||
while (timer_context.action_queue.try_dequeue(cur_action)) {
|
||||
process_timer_action(cur_action);
|
||||
}
|
||||
|
||||
// If there's no timer to act on, wait for one to come in from the action queue
|
||||
while (active_timers.empty()) {
|
||||
timer_context.action_queue.wait_dequeue(cur_action);
|
||||
process_timer_action(cur_action);
|
||||
}
|
||||
|
||||
// Get the timer that's closest to running out
|
||||
PTR(OSTimer) cur_timer_ = *active_timers.begin();
|
||||
OSTimer* cur_timer = TO_PTR(OSTimer, cur_timer_);
|
||||
|
||||
// Remove the timer from the queue (it may get readded if waiting is interrupted)
|
||||
active_timers.erase(cur_timer_);
|
||||
|
||||
// Determine how long to wait to reach the timer's timestamp
|
||||
auto wait_duration = ticks_to_timepoint(cur_timer->timestamp) - std::chrono::system_clock::now();
|
||||
auto wait_us = std::chrono::duration_cast<std::chrono::microseconds>(wait_duration);
|
||||
|
||||
// Wait for either the duration to complete or a new action to come through
|
||||
if (timer_context.action_queue.wait_dequeue_timed(cur_action, wait_duration)) {
|
||||
// Timer was interrupted by a new action
|
||||
// Add the current timer back to the queue (done first in case the action is to remove this timer)
|
||||
active_timers.insert(cur_timer_);
|
||||
// Process the new action
|
||||
process_timer_action(cur_action);
|
||||
} else {
|
||||
// Waiting for the timer completed, so send the timer's message to its message queue
|
||||
osSendMesg(PASS_RDRAM cur_timer->mq, cur_timer->msg, OS_MESG_NOBLOCK);
|
||||
// If the timer has a specified interval then reload it with that value
|
||||
if (cur_timer->interval != 0) {
|
||||
cur_timer->timestamp = cur_timer->interval + time_now();
|
||||
active_timers.insert(cur_timer_);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Multilibultra::init_timers(RDRAM_ARG1) {
|
||||
timer_context.thread = std::thread{ timer_thread, PASS_RDRAM1 };
|
||||
}
|
||||
|
||||
uint32_t Multilibultra::get_speed_multiplier() {
|
||||
return speed_multiplier;
|
||||
}
|
||||
|
||||
std::chrono::system_clock::time_point Multilibultra::get_start() {
|
||||
return start;
|
||||
}
|
||||
|
||||
std::chrono::system_clock::duration Multilibultra::time_since_start() {
|
||||
return std::chrono::system_clock::now() - start;
|
||||
}
|
||||
|
||||
extern "C" u32 osGetCount() {
|
||||
uint64_t total_count = time_now();
|
||||
|
||||
// Allow for overflows, which is how osGetCount behaves
|
||||
return (uint32_t)total_count;
|
||||
}
|
||||
|
||||
extern "C" OSTime osGetTime() {
|
||||
uint64_t total_count = time_now();
|
||||
|
||||
return total_count;
|
||||
}
|
||||
|
||||
extern "C" int osSetTimer(RDRAM_ARG PTR(OSTimer) t_, OSTime countdown, OSTime interval, PTR(OSMesgQueue) mq, OSMesg msg) {
|
||||
OSTimer* t = TO_PTR(OSTimer, t_);
|
||||
|
||||
// Determine the time when this timer will trigger off
|
||||
if (countdown == 0) {
|
||||
// Set the timestamp based on the interval
|
||||
t->timestamp = interval + time_now();
|
||||
} else {
|
||||
t->timestamp = countdown + time_now();
|
||||
}
|
||||
t->interval = interval;
|
||||
t->mq = mq;
|
||||
t->msg = msg;
|
||||
|
||||
timer_context.action_queue.enqueue(AddTimerAction{ t_ });
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
extern "C" int osStopTimer(RDRAM_ARG PTR(OSTimer) t_) {
|
||||
timer_context.action_queue.enqueue(RemoveTimerAction{ t_ });
|
||||
|
||||
// TODO don't blindly return 0 here; requires some response from the timer thread to know what the returned value was
|
||||
return 0;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue