Move solution and projects to src
This commit is contained in:
parent
cd124bda58
commit
cee7121058
3466 changed files with 55 additions and 55 deletions
9
src/Ryujinx.HLE/HOS/Kernel/Threading/ArbitrationType.cs
Normal file
9
src/Ryujinx.HLE/HOS/Kernel/Threading/ArbitrationType.cs
Normal file
|
@ -0,0 +1,9 @@
|
|||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
enum ArbitrationType
|
||||
{
|
||||
WaitIfLessThan = 0,
|
||||
DecrementAndWaitIfLessThan = 1,
|
||||
WaitIfEqual = 2
|
||||
}
|
||||
}
|
581
src/Ryujinx.HLE/HOS/Kernel/Threading/KAddressArbiter.cs
Normal file
581
src/Ryujinx.HLE/HOS/Kernel/Threading/KAddressArbiter.cs
Normal file
|
@ -0,0 +1,581 @@
|
|||
using Ryujinx.HLE.HOS.Kernel.Common;
|
||||
using Ryujinx.HLE.HOS.Kernel.Process;
|
||||
using Ryujinx.Horizon.Common;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Linq;
|
||||
using System.Threading;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
class KAddressArbiter
|
||||
{
|
||||
private const int HasListenersMask = 0x40000000;
|
||||
|
||||
private readonly KernelContext _context;
|
||||
|
||||
private readonly List<KThread> _condVarThreads;
|
||||
private readonly List<KThread> _arbiterThreads;
|
||||
|
||||
public KAddressArbiter(KernelContext context)
|
||||
{
|
||||
_context = context;
|
||||
|
||||
_condVarThreads = new List<KThread>();
|
||||
_arbiterThreads = new List<KThread>();
|
||||
}
|
||||
|
||||
public Result ArbitrateLock(int ownerHandle, ulong mutexAddress, int requesterHandle)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.TerminationRequested)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.ThreadTerminating;
|
||||
}
|
||||
|
||||
currentThread.SignaledObj = null;
|
||||
currentThread.ObjSyncResult = Result.Success;
|
||||
|
||||
KProcess currentProcess = KernelStatic.GetCurrentProcess();
|
||||
|
||||
if (!KernelTransfer.UserToKernel(out int mutexValue, mutexAddress))
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidMemState;
|
||||
}
|
||||
|
||||
if (mutexValue != (ownerHandle | HasListenersMask))
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return Result.Success;
|
||||
}
|
||||
|
||||
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(ownerHandle);
|
||||
|
||||
if (mutexOwner == null)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidHandle;
|
||||
}
|
||||
|
||||
currentThread.MutexAddress = mutexAddress;
|
||||
currentThread.ThreadHandleForUserMutex = requesterHandle;
|
||||
|
||||
mutexOwner.AddMutexWaiter(currentThread);
|
||||
|
||||
currentThread.Reschedule(ThreadSchedState.Paused);
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.MutexOwner != null)
|
||||
{
|
||||
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return currentThread.ObjSyncResult;
|
||||
}
|
||||
|
||||
public Result ArbitrateUnlock(ulong mutexAddress)
|
||||
{
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
(int mutexValue, KThread newOwnerThread) = MutexUnlock(currentThread, mutexAddress);
|
||||
|
||||
Result result = Result.Success;
|
||||
|
||||
if (!KernelTransfer.KernelToUser(mutexAddress, mutexValue))
|
||||
{
|
||||
result = KernelResult.InvalidMemState;
|
||||
}
|
||||
|
||||
if (result != Result.Success && newOwnerThread != null)
|
||||
{
|
||||
newOwnerThread.SignaledObj = null;
|
||||
newOwnerThread.ObjSyncResult = result;
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
public Result WaitProcessWideKeyAtomic(ulong mutexAddress, ulong condVarAddress, int threadHandle, long timeout)
|
||||
{
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
currentThread.SignaledObj = null;
|
||||
currentThread.ObjSyncResult = KernelResult.TimedOut;
|
||||
|
||||
if (currentThread.TerminationRequested)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.ThreadTerminating;
|
||||
}
|
||||
|
||||
(int mutexValue, _) = MutexUnlock(currentThread, mutexAddress);
|
||||
|
||||
KernelTransfer.KernelToUser(condVarAddress, 1);
|
||||
|
||||
if (!KernelTransfer.KernelToUser(mutexAddress, mutexValue))
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidMemState;
|
||||
}
|
||||
|
||||
currentThread.MutexAddress = mutexAddress;
|
||||
currentThread.ThreadHandleForUserMutex = threadHandle;
|
||||
currentThread.CondVarAddress = condVarAddress;
|
||||
|
||||
_condVarThreads.Add(currentThread);
|
||||
|
||||
if (timeout != 0)
|
||||
{
|
||||
currentThread.Reschedule(ThreadSchedState.Paused);
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
|
||||
}
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.MutexOwner != null)
|
||||
{
|
||||
currentThread.MutexOwner.RemoveMutexWaiter(currentThread);
|
||||
}
|
||||
|
||||
_condVarThreads.Remove(currentThread);
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return currentThread.ObjSyncResult;
|
||||
}
|
||||
|
||||
private (int, KThread) MutexUnlock(KThread currentThread, ulong mutexAddress)
|
||||
{
|
||||
KThread newOwnerThread = currentThread.RelinquishMutex(mutexAddress, out int count);
|
||||
|
||||
int mutexValue = 0;
|
||||
|
||||
if (newOwnerThread != null)
|
||||
{
|
||||
mutexValue = newOwnerThread.ThreadHandleForUserMutex;
|
||||
|
||||
if (count >= 2)
|
||||
{
|
||||
mutexValue |= HasListenersMask;
|
||||
}
|
||||
|
||||
newOwnerThread.SignaledObj = null;
|
||||
newOwnerThread.ObjSyncResult = Result.Success;
|
||||
|
||||
newOwnerThread.ReleaseAndResume();
|
||||
}
|
||||
|
||||
return (mutexValue, newOwnerThread);
|
||||
}
|
||||
|
||||
public void SignalProcessWideKey(ulong address, int count)
|
||||
{
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
WakeThreads(_condVarThreads, count, TryAcquireMutex, x => x.CondVarAddress == address);
|
||||
|
||||
if (!_condVarThreads.Any(x => x.CondVarAddress == address))
|
||||
{
|
||||
KernelTransfer.KernelToUser(address, 0);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
private static void TryAcquireMutex(KThread requester)
|
||||
{
|
||||
ulong address = requester.MutexAddress;
|
||||
|
||||
KProcess currentProcess = KernelStatic.GetCurrentProcess();
|
||||
|
||||
if (!currentProcess.CpuMemory.IsMapped(address))
|
||||
{
|
||||
// Invalid address.
|
||||
requester.SignaledObj = null;
|
||||
requester.ObjSyncResult = KernelResult.InvalidMemState;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
ref int mutexRef = ref currentProcess.CpuMemory.GetRef<int>(address);
|
||||
|
||||
int mutexValue, newMutexValue;
|
||||
|
||||
do
|
||||
{
|
||||
mutexValue = mutexRef;
|
||||
|
||||
if (mutexValue != 0)
|
||||
{
|
||||
// Update value to indicate there is a mutex waiter now.
|
||||
newMutexValue = mutexValue | HasListenersMask;
|
||||
}
|
||||
else
|
||||
{
|
||||
// No thread owning the mutex, assign to requesting thread.
|
||||
newMutexValue = requester.ThreadHandleForUserMutex;
|
||||
}
|
||||
}
|
||||
while (Interlocked.CompareExchange(ref mutexRef, newMutexValue, mutexValue) != mutexValue);
|
||||
|
||||
if (mutexValue == 0)
|
||||
{
|
||||
// We now own the mutex.
|
||||
requester.SignaledObj = null;
|
||||
requester.ObjSyncResult = Result.Success;
|
||||
|
||||
requester.ReleaseAndResume();
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
mutexValue &= ~HasListenersMask;
|
||||
|
||||
KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(mutexValue);
|
||||
|
||||
if (mutexOwner != null)
|
||||
{
|
||||
// Mutex already belongs to another thread, wait for it.
|
||||
mutexOwner.AddMutexWaiter(requester);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Invalid mutex owner.
|
||||
requester.SignaledObj = null;
|
||||
requester.ObjSyncResult = KernelResult.InvalidHandle;
|
||||
|
||||
requester.ReleaseAndResume();
|
||||
}
|
||||
}
|
||||
|
||||
public Result WaitForAddressIfEqual(ulong address, int value, long timeout)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.TerminationRequested)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.ThreadTerminating;
|
||||
}
|
||||
|
||||
currentThread.SignaledObj = null;
|
||||
currentThread.ObjSyncResult = KernelResult.TimedOut;
|
||||
|
||||
if (!KernelTransfer.UserToKernel(out int currentValue, address))
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidMemState;
|
||||
}
|
||||
|
||||
if (currentValue == value)
|
||||
{
|
||||
if (timeout == 0)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.TimedOut;
|
||||
}
|
||||
|
||||
currentThread.MutexAddress = address;
|
||||
currentThread.WaitingInArbitration = true;
|
||||
|
||||
_arbiterThreads.Add(currentThread);
|
||||
|
||||
currentThread.Reschedule(ThreadSchedState.Paused);
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.WaitingInArbitration)
|
||||
{
|
||||
_arbiterThreads.Remove(currentThread);
|
||||
|
||||
currentThread.WaitingInArbitration = false;
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return currentThread.ObjSyncResult;
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidState;
|
||||
}
|
||||
|
||||
public Result WaitForAddressIfLessThan(ulong address, int value, bool shouldDecrement, long timeout)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.TerminationRequested)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.ThreadTerminating;
|
||||
}
|
||||
|
||||
currentThread.SignaledObj = null;
|
||||
currentThread.ObjSyncResult = KernelResult.TimedOut;
|
||||
|
||||
KProcess currentProcess = KernelStatic.GetCurrentProcess();
|
||||
|
||||
if (!KernelTransfer.UserToKernel(out int currentValue, address))
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidMemState;
|
||||
}
|
||||
|
||||
if (shouldDecrement)
|
||||
{
|
||||
currentValue = Interlocked.Decrement(ref currentProcess.CpuMemory.GetRef<int>(address)) + 1;
|
||||
}
|
||||
|
||||
if (currentValue < value)
|
||||
{
|
||||
if (timeout == 0)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.TimedOut;
|
||||
}
|
||||
|
||||
currentThread.MutexAddress = address;
|
||||
currentThread.WaitingInArbitration = true;
|
||||
|
||||
_arbiterThreads.Add(currentThread);
|
||||
|
||||
currentThread.Reschedule(ThreadSchedState.Paused);
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.WaitingInArbitration)
|
||||
{
|
||||
_arbiterThreads.Remove(currentThread);
|
||||
|
||||
currentThread.WaitingInArbitration = false;
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return currentThread.ObjSyncResult;
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidState;
|
||||
}
|
||||
|
||||
public Result Signal(ulong address, int count)
|
||||
{
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
WakeArbiterThreads(address, count);
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return Result.Success;
|
||||
}
|
||||
|
||||
public Result SignalAndIncrementIfEqual(ulong address, int value, int count)
|
||||
{
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
KProcess currentProcess = KernelStatic.GetCurrentProcess();
|
||||
|
||||
if (!currentProcess.CpuMemory.IsMapped(address))
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidMemState;
|
||||
}
|
||||
|
||||
ref int valueRef = ref currentProcess.CpuMemory.GetRef<int>(address);
|
||||
|
||||
int currentValue;
|
||||
|
||||
do
|
||||
{
|
||||
currentValue = valueRef;
|
||||
|
||||
if (currentValue != value)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidState;
|
||||
}
|
||||
}
|
||||
while (Interlocked.CompareExchange(ref valueRef, currentValue + 1, currentValue) != currentValue);
|
||||
|
||||
WakeArbiterThreads(address, count);
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return Result.Success;
|
||||
}
|
||||
|
||||
public Result SignalAndModifyIfEqual(ulong address, int value, int count)
|
||||
{
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
int addend;
|
||||
|
||||
// The value is decremented if the number of threads waiting is less
|
||||
// or equal to the Count of threads to be signaled, or Count is zero
|
||||
// or negative. It is incremented if there are no threads waiting.
|
||||
int waitingCount = 0;
|
||||
|
||||
foreach (KThread thread in _arbiterThreads.Where(x => x.MutexAddress == address))
|
||||
{
|
||||
if (++waitingCount >= count)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (waitingCount > 0)
|
||||
{
|
||||
if (count <= 0)
|
||||
{
|
||||
addend = -2;
|
||||
}
|
||||
else if (waitingCount < count)
|
||||
{
|
||||
addend = -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
addend = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
addend = 1;
|
||||
}
|
||||
|
||||
KProcess currentProcess = KernelStatic.GetCurrentProcess();
|
||||
|
||||
if (!currentProcess.CpuMemory.IsMapped(address))
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidMemState;
|
||||
}
|
||||
|
||||
ref int valueRef = ref currentProcess.CpuMemory.GetRef<int>(address);
|
||||
|
||||
int currentValue;
|
||||
|
||||
do
|
||||
{
|
||||
currentValue = valueRef;
|
||||
|
||||
if (currentValue != value)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return KernelResult.InvalidState;
|
||||
}
|
||||
}
|
||||
while (Interlocked.CompareExchange(ref valueRef, currentValue + addend, currentValue) != currentValue);
|
||||
|
||||
WakeArbiterThreads(address, count);
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return Result.Success;
|
||||
}
|
||||
|
||||
private void WakeArbiterThreads(ulong address, int count)
|
||||
{
|
||||
static void RemoveArbiterThread(KThread thread)
|
||||
{
|
||||
thread.SignaledObj = null;
|
||||
thread.ObjSyncResult = Result.Success;
|
||||
|
||||
thread.ReleaseAndResume();
|
||||
|
||||
thread.WaitingInArbitration = false;
|
||||
}
|
||||
|
||||
WakeThreads(_arbiterThreads, count, RemoveArbiterThread, x => x.MutexAddress == address);
|
||||
}
|
||||
|
||||
private static void WakeThreads(
|
||||
List<KThread> threads,
|
||||
int count,
|
||||
Action<KThread> removeCallback,
|
||||
Func<KThread, bool> predicate)
|
||||
{
|
||||
var candidates = threads.Where(predicate).OrderBy(x => x.DynamicPriority);
|
||||
var toSignal = (count > 0 ? candidates.Take(count) : candidates).ToArray();
|
||||
|
||||
foreach (KThread thread in toSignal)
|
||||
{
|
||||
removeCallback(thread);
|
||||
threads.Remove(thread);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
70
src/Ryujinx.HLE/HOS/Kernel/Threading/KConditionVariable.cs
Normal file
70
src/Ryujinx.HLE/HOS/Kernel/Threading/KConditionVariable.cs
Normal file
|
@ -0,0 +1,70 @@
|
|||
using System.Collections.Generic;
|
||||
using System.Threading;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
static class KConditionVariable
|
||||
{
|
||||
public static void Wait(KernelContext context, LinkedList<KThread> threadList, object mutex, long timeout)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
Monitor.Exit(mutex);
|
||||
|
||||
currentThread.Withholder = threadList;
|
||||
|
||||
currentThread.Reschedule(ThreadSchedState.Paused);
|
||||
|
||||
currentThread.WithholderNode = threadList.AddLast(currentThread);
|
||||
|
||||
if (currentThread.TerminationRequested)
|
||||
{
|
||||
threadList.Remove(currentThread.WithholderNode);
|
||||
|
||||
currentThread.Reschedule(ThreadSchedState.Running);
|
||||
|
||||
currentThread.Withholder = null;
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
}
|
||||
else
|
||||
{
|
||||
if (timeout > 0)
|
||||
{
|
||||
context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
context.TimeManager.UnscheduleFutureInvocation(currentThread);
|
||||
}
|
||||
}
|
||||
|
||||
Monitor.Enter(mutex);
|
||||
}
|
||||
|
||||
public static void NotifyAll(KernelContext context, LinkedList<KThread> threadList)
|
||||
{
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
LinkedListNode<KThread> node = threadList.First;
|
||||
|
||||
for (; node != null; node = threadList.First)
|
||||
{
|
||||
KThread thread = node.Value;
|
||||
|
||||
threadList.Remove(thread.WithholderNode);
|
||||
|
||||
thread.Withholder = null;
|
||||
|
||||
thread.Reschedule(ThreadSchedState.Running);
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
}
|
||||
}
|
||||
}
|
64
src/Ryujinx.HLE/HOS/Kernel/Threading/KCriticalSection.cs
Normal file
64
src/Ryujinx.HLE/HOS/Kernel/Threading/KCriticalSection.cs
Normal file
|
@ -0,0 +1,64 @@
|
|||
using System.Threading;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
class KCriticalSection
|
||||
{
|
||||
private readonly KernelContext _context;
|
||||
private readonly object _lock;
|
||||
private int _recursionCount;
|
||||
|
||||
public object Lock => _lock;
|
||||
|
||||
public KCriticalSection(KernelContext context)
|
||||
{
|
||||
_context = context;
|
||||
_lock = new object();
|
||||
}
|
||||
|
||||
public void Enter()
|
||||
{
|
||||
Monitor.Enter(_lock);
|
||||
|
||||
_recursionCount++;
|
||||
}
|
||||
|
||||
public void Leave()
|
||||
{
|
||||
if (_recursionCount == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (--_recursionCount == 0)
|
||||
{
|
||||
ulong scheduledCoresMask = KScheduler.SelectThreads(_context);
|
||||
|
||||
Monitor.Exit(_lock);
|
||||
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
bool isCurrentThreadSchedulable = currentThread != null && currentThread.IsSchedulable;
|
||||
if (isCurrentThreadSchedulable)
|
||||
{
|
||||
KScheduler.EnableScheduling(_context, scheduledCoresMask);
|
||||
}
|
||||
else
|
||||
{
|
||||
KScheduler.EnableSchedulingFromForeignThread(_context, scheduledCoresMask);
|
||||
|
||||
// If the thread exists but is not schedulable, we still want to suspend
|
||||
// it if it's not runnable. That allows the kernel to still block HLE threads
|
||||
// even if they are not scheduled on guest cores.
|
||||
if (currentThread != null && !currentThread.IsSchedulable && currentThread.Context.Running)
|
||||
{
|
||||
currentThread.SchedulerWaitEvent.WaitOne();
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Monitor.Exit(_lock);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
14
src/Ryujinx.HLE/HOS/Kernel/Threading/KEvent.cs
Normal file
14
src/Ryujinx.HLE/HOS/Kernel/Threading/KEvent.cs
Normal file
|
@ -0,0 +1,14 @@
|
|||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
class KEvent
|
||||
{
|
||||
public KReadableEvent ReadableEvent { get; private set; }
|
||||
public KWritableEvent WritableEvent { get; private set; }
|
||||
|
||||
public KEvent(KernelContext context)
|
||||
{
|
||||
ReadableEvent = new KReadableEvent(context, this);
|
||||
WritableEvent = new KWritableEvent(context, this);
|
||||
}
|
||||
}
|
||||
}
|
286
src/Ryujinx.HLE/HOS/Kernel/Threading/KPriorityQueue.cs
Normal file
286
src/Ryujinx.HLE/HOS/Kernel/Threading/KPriorityQueue.cs
Normal file
|
@ -0,0 +1,286 @@
|
|||
using System.Collections.Generic;
|
||||
using System.Numerics;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
class KPriorityQueue
|
||||
{
|
||||
private readonly LinkedList<KThread>[][] _scheduledThreadsPerPrioPerCore;
|
||||
private readonly LinkedList<KThread>[][] _suggestedThreadsPerPrioPerCore;
|
||||
|
||||
private readonly long[] _scheduledPrioritiesPerCore;
|
||||
private readonly long[] _suggestedPrioritiesPerCore;
|
||||
|
||||
public KPriorityQueue()
|
||||
{
|
||||
_suggestedThreadsPerPrioPerCore = new LinkedList<KThread>[KScheduler.PrioritiesCount][];
|
||||
_scheduledThreadsPerPrioPerCore = new LinkedList<KThread>[KScheduler.PrioritiesCount][];
|
||||
|
||||
for (int prio = 0; prio < KScheduler.PrioritiesCount; prio++)
|
||||
{
|
||||
_suggestedThreadsPerPrioPerCore[prio] = new LinkedList<KThread>[KScheduler.CpuCoresCount];
|
||||
_scheduledThreadsPerPrioPerCore[prio] = new LinkedList<KThread>[KScheduler.CpuCoresCount];
|
||||
|
||||
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
|
||||
{
|
||||
_suggestedThreadsPerPrioPerCore[prio][core] = new LinkedList<KThread>();
|
||||
_scheduledThreadsPerPrioPerCore[prio][core] = new LinkedList<KThread>();
|
||||
}
|
||||
}
|
||||
|
||||
_scheduledPrioritiesPerCore = new long[KScheduler.CpuCoresCount];
|
||||
_suggestedPrioritiesPerCore = new long[KScheduler.CpuCoresCount];
|
||||
}
|
||||
|
||||
public readonly ref struct KThreadEnumerable
|
||||
{
|
||||
readonly LinkedList<KThread>[][] _listPerPrioPerCore;
|
||||
readonly long[] _prios;
|
||||
readonly int _core;
|
||||
|
||||
public KThreadEnumerable(LinkedList<KThread>[][] listPerPrioPerCore, long[] prios, int core)
|
||||
{
|
||||
_listPerPrioPerCore = listPerPrioPerCore;
|
||||
_prios = prios;
|
||||
_core = core;
|
||||
}
|
||||
|
||||
public Enumerator GetEnumerator()
|
||||
{
|
||||
return new Enumerator(_listPerPrioPerCore, _prios, _core);
|
||||
}
|
||||
|
||||
public ref struct Enumerator
|
||||
{
|
||||
private readonly LinkedList<KThread>[][] _listPerPrioPerCore;
|
||||
private readonly int _core;
|
||||
private long _prioMask;
|
||||
private int _prio;
|
||||
private LinkedList<KThread> _list;
|
||||
private LinkedListNode<KThread> _node;
|
||||
|
||||
public Enumerator(LinkedList<KThread>[][] listPerPrioPerCore, long[] prios, int core)
|
||||
{
|
||||
_listPerPrioPerCore = listPerPrioPerCore;
|
||||
_core = core;
|
||||
_prioMask = prios[core];
|
||||
_prio = BitOperations.TrailingZeroCount(_prioMask);
|
||||
_prioMask &= ~(1L << _prio);
|
||||
}
|
||||
|
||||
public KThread Current => _node?.Value;
|
||||
|
||||
public bool MoveNext()
|
||||
{
|
||||
_node = _node?.Next;
|
||||
|
||||
if (_node == null)
|
||||
{
|
||||
if (!MoveNextListAndFirstNode())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return _node != null;
|
||||
}
|
||||
|
||||
private bool MoveNextListAndFirstNode()
|
||||
{
|
||||
if (_prio < KScheduler.PrioritiesCount)
|
||||
{
|
||||
_list = _listPerPrioPerCore[_prio][_core];
|
||||
|
||||
_node = _list.First;
|
||||
|
||||
_prio = BitOperations.TrailingZeroCount(_prioMask);
|
||||
|
||||
_prioMask &= ~(1L << _prio);
|
||||
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
_list = null;
|
||||
_node = null;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public KThreadEnumerable ScheduledThreads(int core)
|
||||
{
|
||||
return new KThreadEnumerable(_scheduledThreadsPerPrioPerCore, _scheduledPrioritiesPerCore, core);
|
||||
}
|
||||
|
||||
public KThreadEnumerable SuggestedThreads(int core)
|
||||
{
|
||||
return new KThreadEnumerable(_suggestedThreadsPerPrioPerCore, _suggestedPrioritiesPerCore, core);
|
||||
}
|
||||
|
||||
public KThread ScheduledThreadsFirstOrDefault(int core)
|
||||
{
|
||||
return ScheduledThreadsElementAtOrDefault(core, 0);
|
||||
}
|
||||
|
||||
public KThread ScheduledThreadsElementAtOrDefault(int core, int index)
|
||||
{
|
||||
int currentIndex = 0;
|
||||
foreach (var scheduledThread in ScheduledThreads(core))
|
||||
{
|
||||
if (currentIndex == index)
|
||||
{
|
||||
return scheduledThread;
|
||||
}
|
||||
else
|
||||
{
|
||||
currentIndex++;
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
public KThread ScheduledThreadsWithDynamicPriorityFirstOrDefault(int core, int dynamicPriority)
|
||||
{
|
||||
foreach (var scheduledThread in ScheduledThreads(core))
|
||||
{
|
||||
if (scheduledThread.DynamicPriority == dynamicPriority)
|
||||
{
|
||||
return scheduledThread;
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
public bool HasScheduledThreads(int core)
|
||||
{
|
||||
return ScheduledThreadsFirstOrDefault(core) != null;
|
||||
}
|
||||
|
||||
public void TransferToCore(int prio, int dstCore, KThread thread)
|
||||
{
|
||||
int srcCore = thread.ActiveCore;
|
||||
if (srcCore == dstCore)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
thread.ActiveCore = dstCore;
|
||||
|
||||
if (srcCore >= 0)
|
||||
{
|
||||
Unschedule(prio, srcCore, thread);
|
||||
}
|
||||
|
||||
if (dstCore >= 0)
|
||||
{
|
||||
Unsuggest(prio, dstCore, thread);
|
||||
Schedule(prio, dstCore, thread);
|
||||
}
|
||||
|
||||
if (srcCore >= 0)
|
||||
{
|
||||
Suggest(prio, srcCore, thread);
|
||||
}
|
||||
}
|
||||
|
||||
public void Suggest(int prio, int core, KThread thread)
|
||||
{
|
||||
if (prio >= KScheduler.PrioritiesCount)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
thread.SiblingsPerCore[core] = SuggestedQueue(prio, core).AddFirst(thread);
|
||||
|
||||
_suggestedPrioritiesPerCore[core] |= 1L << prio;
|
||||
}
|
||||
|
||||
public void Unsuggest(int prio, int core, KThread thread)
|
||||
{
|
||||
if (prio >= KScheduler.PrioritiesCount)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
LinkedList<KThread> queue = SuggestedQueue(prio, core);
|
||||
|
||||
queue.Remove(thread.SiblingsPerCore[core]);
|
||||
|
||||
if (queue.First == null)
|
||||
{
|
||||
_suggestedPrioritiesPerCore[core] &= ~(1L << prio);
|
||||
}
|
||||
}
|
||||
|
||||
public void Schedule(int prio, int core, KThread thread)
|
||||
{
|
||||
if (prio >= KScheduler.PrioritiesCount)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
thread.SiblingsPerCore[core] = ScheduledQueue(prio, core).AddLast(thread);
|
||||
|
||||
_scheduledPrioritiesPerCore[core] |= 1L << prio;
|
||||
}
|
||||
|
||||
public void SchedulePrepend(int prio, int core, KThread thread)
|
||||
{
|
||||
if (prio >= KScheduler.PrioritiesCount)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
thread.SiblingsPerCore[core] = ScheduledQueue(prio, core).AddFirst(thread);
|
||||
|
||||
_scheduledPrioritiesPerCore[core] |= 1L << prio;
|
||||
}
|
||||
|
||||
public KThread Reschedule(int prio, int core, KThread thread)
|
||||
{
|
||||
if (prio >= KScheduler.PrioritiesCount)
|
||||
{
|
||||
return null;
|
||||
}
|
||||
|
||||
LinkedList<KThread> queue = ScheduledQueue(prio, core);
|
||||
|
||||
queue.Remove(thread.SiblingsPerCore[core]);
|
||||
|
||||
thread.SiblingsPerCore[core] = queue.AddLast(thread);
|
||||
|
||||
return queue.First.Value;
|
||||
}
|
||||
|
||||
public void Unschedule(int prio, int core, KThread thread)
|
||||
{
|
||||
if (prio >= KScheduler.PrioritiesCount)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
LinkedList<KThread> queue = ScheduledQueue(prio, core);
|
||||
|
||||
queue.Remove(thread.SiblingsPerCore[core]);
|
||||
|
||||
if (queue.First == null)
|
||||
{
|
||||
_scheduledPrioritiesPerCore[core] &= ~(1L << prio);
|
||||
}
|
||||
}
|
||||
|
||||
private LinkedList<KThread> SuggestedQueue(int prio, int core)
|
||||
{
|
||||
return _suggestedThreadsPerPrioPerCore[prio][core];
|
||||
}
|
||||
|
||||
private LinkedList<KThread> ScheduledQueue(int prio, int core)
|
||||
{
|
||||
return _scheduledThreadsPerPrioPerCore[prio][core];
|
||||
}
|
||||
}
|
||||
}
|
65
src/Ryujinx.HLE/HOS/Kernel/Threading/KReadableEvent.cs
Normal file
65
src/Ryujinx.HLE/HOS/Kernel/Threading/KReadableEvent.cs
Normal file
|
@ -0,0 +1,65 @@
|
|||
using Ryujinx.HLE.HOS.Kernel.Common;
|
||||
using Ryujinx.Horizon.Common;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
class KReadableEvent : KSynchronizationObject
|
||||
{
|
||||
private readonly KEvent _parent;
|
||||
|
||||
private bool _signaled;
|
||||
|
||||
public KReadableEvent(KernelContext context, KEvent parent) : base(context)
|
||||
{
|
||||
_parent = parent;
|
||||
}
|
||||
|
||||
public override void Signal()
|
||||
{
|
||||
KernelContext.CriticalSection.Enter();
|
||||
|
||||
if (!_signaled)
|
||||
{
|
||||
_signaled = true;
|
||||
|
||||
base.Signal();
|
||||
}
|
||||
|
||||
KernelContext.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
public Result Clear()
|
||||
{
|
||||
_signaled = false;
|
||||
|
||||
return Result.Success;
|
||||
}
|
||||
|
||||
public Result ClearIfSignaled()
|
||||
{
|
||||
Result result;
|
||||
|
||||
KernelContext.CriticalSection.Enter();
|
||||
|
||||
if (_signaled)
|
||||
{
|
||||
_signaled = false;
|
||||
|
||||
result = Result.Success;
|
||||
}
|
||||
else
|
||||
{
|
||||
result = KernelResult.InvalidState;
|
||||
}
|
||||
|
||||
KernelContext.CriticalSection.Leave();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
public override bool IsSignaled()
|
||||
{
|
||||
return _signaled;
|
||||
}
|
||||
}
|
||||
}
|
661
src/Ryujinx.HLE/HOS/Kernel/Threading/KScheduler.cs
Normal file
661
src/Ryujinx.HLE/HOS/Kernel/Threading/KScheduler.cs
Normal file
|
@ -0,0 +1,661 @@
|
|||
using Ryujinx.Common;
|
||||
using Ryujinx.HLE.HOS.Kernel.Process;
|
||||
using System;
|
||||
using System.Numerics;
|
||||
using System.Threading;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
partial class KScheduler : IDisposable
|
||||
{
|
||||
public const int PrioritiesCount = 64;
|
||||
public const int CpuCoresCount = 4;
|
||||
|
||||
private const int RoundRobinTimeQuantumMs = 10;
|
||||
|
||||
private static readonly int[] PreemptionPriorities = new int[] { 59, 59, 59, 63 };
|
||||
|
||||
private static readonly int[] _srcCoresHighestPrioThreads = new int[CpuCoresCount];
|
||||
|
||||
private readonly KernelContext _context;
|
||||
private readonly int _coreId;
|
||||
|
||||
private struct SchedulingState
|
||||
{
|
||||
public volatile bool NeedsScheduling;
|
||||
public volatile KThread SelectedThread;
|
||||
}
|
||||
|
||||
private SchedulingState _state;
|
||||
|
||||
private AutoResetEvent _idleInterruptEvent;
|
||||
private readonly object _idleInterruptEventLock;
|
||||
|
||||
private KThread _previousThread;
|
||||
private KThread _currentThread;
|
||||
private readonly KThread _idleThread;
|
||||
|
||||
public KThread PreviousThread => _previousThread;
|
||||
public KThread CurrentThread => _currentThread;
|
||||
public long LastContextSwitchTime { get; private set; }
|
||||
public long TotalIdleTimeTicks => _idleThread.TotalTimeRunning;
|
||||
|
||||
public KScheduler(KernelContext context, int coreId)
|
||||
{
|
||||
_context = context;
|
||||
_coreId = coreId;
|
||||
|
||||
_idleInterruptEvent = new AutoResetEvent(false);
|
||||
_idleInterruptEventLock = new object();
|
||||
|
||||
KThread idleThread = CreateIdleThread(context, coreId);
|
||||
|
||||
_currentThread = idleThread;
|
||||
_idleThread = idleThread;
|
||||
|
||||
idleThread.StartHostThread();
|
||||
idleThread.SchedulerWaitEvent.Set();
|
||||
}
|
||||
|
||||
private KThread CreateIdleThread(KernelContext context, int cpuCore)
|
||||
{
|
||||
KThread idleThread = new KThread(context);
|
||||
|
||||
idleThread.Initialize(0UL, 0UL, 0UL, PrioritiesCount, cpuCore, null, ThreadType.Dummy, IdleThreadLoop);
|
||||
|
||||
return idleThread;
|
||||
}
|
||||
|
||||
public static ulong SelectThreads(KernelContext context)
|
||||
{
|
||||
if (context.ThreadReselectionRequested)
|
||||
{
|
||||
return SelectThreadsImpl(context);
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0UL;
|
||||
}
|
||||
}
|
||||
|
||||
private static ulong SelectThreadsImpl(KernelContext context)
|
||||
{
|
||||
context.ThreadReselectionRequested = false;
|
||||
|
||||
ulong scheduledCoresMask = 0UL;
|
||||
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
KThread thread = context.PriorityQueue.ScheduledThreadsFirstOrDefault(core);
|
||||
|
||||
if (thread != null &&
|
||||
thread.Owner != null &&
|
||||
thread.Owner.PinnedThreads[core] != null &&
|
||||
thread.Owner.PinnedThreads[core] != thread)
|
||||
{
|
||||
KThread candidate = thread.Owner.PinnedThreads[core];
|
||||
|
||||
if (candidate.KernelWaitersCount == 0 && !thread.Owner.IsExceptionUserThread(candidate))
|
||||
{
|
||||
if (candidate.SchedFlags == ThreadSchedState.Running)
|
||||
{
|
||||
thread = candidate;
|
||||
}
|
||||
else
|
||||
{
|
||||
thread = null;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
scheduledCoresMask |= context.Schedulers[core].SelectThread(thread);
|
||||
}
|
||||
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
// If the core is not idle (there's already a thread running on it),
|
||||
// then we don't need to attempt load balancing.
|
||||
if (context.PriorityQueue.HasScheduledThreads(core))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
Array.Fill(_srcCoresHighestPrioThreads, 0);
|
||||
|
||||
int srcCoresHighestPrioThreadsCount = 0;
|
||||
|
||||
KThread dst = null;
|
||||
|
||||
// Select candidate threads that could run on this core.
|
||||
// Give preference to threads that are not yet selected.
|
||||
foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
|
||||
{
|
||||
if (suggested.ActiveCore < 0 || suggested != context.Schedulers[suggested.ActiveCore]._state.SelectedThread)
|
||||
{
|
||||
dst = suggested;
|
||||
break;
|
||||
}
|
||||
|
||||
_srcCoresHighestPrioThreads[srcCoresHighestPrioThreadsCount++] = suggested.ActiveCore;
|
||||
}
|
||||
|
||||
// Not yet selected candidate found.
|
||||
if (dst != null)
|
||||
{
|
||||
// Priorities < 2 are used for the kernel message dispatching
|
||||
// threads, we should skip load balancing entirely.
|
||||
if (dst.DynamicPriority >= 2)
|
||||
{
|
||||
context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);
|
||||
|
||||
scheduledCoresMask |= context.Schedulers[core].SelectThread(dst);
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// All candidates are already selected, choose the best one
|
||||
// (the first one that doesn't make the source core idle if moved).
|
||||
for (int index = 0; index < srcCoresHighestPrioThreadsCount; index++)
|
||||
{
|
||||
int srcCore = _srcCoresHighestPrioThreads[index];
|
||||
|
||||
KThread src = context.PriorityQueue.ScheduledThreadsElementAtOrDefault(srcCore, 1);
|
||||
|
||||
if (src != null)
|
||||
{
|
||||
// Run the second thread on the queue on the source core,
|
||||
// move the first one to the current core.
|
||||
KThread origSelectedCoreSrc = context.Schedulers[srcCore]._state.SelectedThread;
|
||||
|
||||
scheduledCoresMask |= context.Schedulers[srcCore].SelectThread(src);
|
||||
|
||||
context.PriorityQueue.TransferToCore(origSelectedCoreSrc.DynamicPriority, core, origSelectedCoreSrc);
|
||||
|
||||
scheduledCoresMask |= context.Schedulers[core].SelectThread(origSelectedCoreSrc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return scheduledCoresMask;
|
||||
}
|
||||
|
||||
private ulong SelectThread(KThread nextThread)
|
||||
{
|
||||
KThread previousThread = _state.SelectedThread;
|
||||
|
||||
if (previousThread != nextThread)
|
||||
{
|
||||
if (previousThread != null)
|
||||
{
|
||||
previousThread.LastScheduledTime = PerformanceCounter.ElapsedTicks;
|
||||
}
|
||||
|
||||
_state.SelectedThread = nextThread;
|
||||
_state.NeedsScheduling = true;
|
||||
return 1UL << _coreId;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0UL;
|
||||
}
|
||||
}
|
||||
|
||||
public static void EnableScheduling(KernelContext context, ulong scheduledCoresMask)
|
||||
{
|
||||
KScheduler currentScheduler = context.Schedulers[KernelStatic.GetCurrentThread().CurrentCore];
|
||||
|
||||
// Note that "RescheduleCurrentCore" will block, so "RescheduleOtherCores" must be done first.
|
||||
currentScheduler.RescheduleOtherCores(scheduledCoresMask);
|
||||
currentScheduler.RescheduleCurrentCore();
|
||||
}
|
||||
|
||||
public static void EnableSchedulingFromForeignThread(KernelContext context, ulong scheduledCoresMask)
|
||||
{
|
||||
RescheduleOtherCores(context, scheduledCoresMask);
|
||||
}
|
||||
|
||||
private void RescheduleCurrentCore()
|
||||
{
|
||||
if (_state.NeedsScheduling)
|
||||
{
|
||||
Schedule();
|
||||
}
|
||||
}
|
||||
|
||||
private void RescheduleOtherCores(ulong scheduledCoresMask)
|
||||
{
|
||||
RescheduleOtherCores(_context, scheduledCoresMask & ~(1UL << _coreId));
|
||||
}
|
||||
|
||||
private static void RescheduleOtherCores(KernelContext context, ulong scheduledCoresMask)
|
||||
{
|
||||
while (scheduledCoresMask != 0)
|
||||
{
|
||||
int coreToSignal = BitOperations.TrailingZeroCount(scheduledCoresMask);
|
||||
|
||||
KThread threadToSignal = context.Schedulers[coreToSignal]._currentThread;
|
||||
|
||||
// Request the thread running on that core to stop and reschedule, if we have one.
|
||||
if (threadToSignal != context.Schedulers[coreToSignal]._idleThread)
|
||||
{
|
||||
threadToSignal.Context.RequestInterrupt();
|
||||
}
|
||||
|
||||
// If the core is idle, ensure that the idle thread is awaken.
|
||||
context.Schedulers[coreToSignal]._idleInterruptEvent.Set();
|
||||
|
||||
scheduledCoresMask &= ~(1UL << coreToSignal);
|
||||
}
|
||||
}
|
||||
|
||||
private void IdleThreadLoop()
|
||||
{
|
||||
while (_context.Running)
|
||||
{
|
||||
_state.NeedsScheduling = false;
|
||||
Thread.MemoryBarrier();
|
||||
KThread nextThread = PickNextThread(_state.SelectedThread);
|
||||
|
||||
if (_idleThread != nextThread)
|
||||
{
|
||||
_idleThread.SchedulerWaitEvent.Reset();
|
||||
WaitHandle.SignalAndWait(nextThread.SchedulerWaitEvent, _idleThread.SchedulerWaitEvent);
|
||||
}
|
||||
|
||||
_idleInterruptEvent.WaitOne();
|
||||
}
|
||||
|
||||
lock (_idleInterruptEventLock)
|
||||
{
|
||||
_idleInterruptEvent.Dispose();
|
||||
_idleInterruptEvent = null;
|
||||
}
|
||||
}
|
||||
|
||||
public void Schedule()
|
||||
{
|
||||
_state.NeedsScheduling = false;
|
||||
Thread.MemoryBarrier();
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
KThread selectedThread = _state.SelectedThread;
|
||||
|
||||
// If the thread is already scheduled and running on the core, we have nothing to do.
|
||||
if (currentThread == selectedThread)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
currentThread.SchedulerWaitEvent.Reset();
|
||||
currentThread.ThreadContext.Unlock();
|
||||
|
||||
// Wake all the threads that might be waiting until this thread context is unlocked.
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
_context.Schedulers[core]._idleInterruptEvent.Set();
|
||||
}
|
||||
|
||||
KThread nextThread = PickNextThread(selectedThread);
|
||||
|
||||
if (currentThread.Context.Running)
|
||||
{
|
||||
// Wait until this thread is scheduled again, and allow the next thread to run.
|
||||
WaitHandle.SignalAndWait(nextThread.SchedulerWaitEvent, currentThread.SchedulerWaitEvent);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Allow the next thread to run.
|
||||
nextThread.SchedulerWaitEvent.Set();
|
||||
|
||||
// We don't need to wait since the thread is exiting, however we need to
|
||||
// make sure this thread will never call the scheduler again, since it is
|
||||
// no longer assigned to a core.
|
||||
currentThread.MakeUnschedulable();
|
||||
|
||||
// Just to be sure, set the core to a invalid value.
|
||||
// This will trigger a exception if it attempts to call schedule again,
|
||||
// rather than leaving the scheduler in a invalid state.
|
||||
currentThread.CurrentCore = -1;
|
||||
}
|
||||
}
|
||||
|
||||
private KThread PickNextThread(KThread selectedThread)
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
if (selectedThread != null)
|
||||
{
|
||||
// Try to run the selected thread.
|
||||
// We need to acquire the context lock to be sure the thread is not
|
||||
// already running on another core. If it is, then we return here
|
||||
// and the caller should try again once there is something available for scheduling.
|
||||
// The thread currently running on the core should have been requested to
|
||||
// interrupt so this is not expected to take long.
|
||||
// The idle thread must also be paused if we are scheduling a thread
|
||||
// on the core, as the scheduled thread will handle the next switch.
|
||||
if (selectedThread.ThreadContext.Lock())
|
||||
{
|
||||
SwitchTo(selectedThread);
|
||||
|
||||
if (!_state.NeedsScheduling)
|
||||
{
|
||||
return selectedThread;
|
||||
}
|
||||
|
||||
selectedThread.ThreadContext.Unlock();
|
||||
}
|
||||
else
|
||||
{
|
||||
return _idleThread;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// The core is idle now, make sure that the idle thread can run
|
||||
// and switch the core when a thread is available.
|
||||
SwitchTo(null);
|
||||
return _idleThread;
|
||||
}
|
||||
|
||||
_state.NeedsScheduling = false;
|
||||
Thread.MemoryBarrier();
|
||||
selectedThread = _state.SelectedThread;
|
||||
}
|
||||
}
|
||||
|
||||
private void SwitchTo(KThread nextThread)
|
||||
{
|
||||
KProcess currentProcess = KernelStatic.GetCurrentProcess();
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
nextThread ??= _idleThread;
|
||||
|
||||
if (currentThread != nextThread)
|
||||
{
|
||||
long previousTicks = LastContextSwitchTime;
|
||||
long currentTicks = PerformanceCounter.ElapsedTicks;
|
||||
long ticksDelta = currentTicks - previousTicks;
|
||||
|
||||
currentThread.AddCpuTime(ticksDelta);
|
||||
|
||||
if (currentProcess != null)
|
||||
{
|
||||
currentProcess.AddCpuTime(ticksDelta);
|
||||
}
|
||||
|
||||
LastContextSwitchTime = currentTicks;
|
||||
|
||||
if (currentProcess != null)
|
||||
{
|
||||
_previousThread = !currentThread.TerminationRequested && currentThread.ActiveCore == _coreId ? currentThread : null;
|
||||
}
|
||||
else if (currentThread == _idleThread)
|
||||
{
|
||||
_previousThread = null;
|
||||
}
|
||||
}
|
||||
|
||||
if (nextThread.CurrentCore != _coreId)
|
||||
{
|
||||
nextThread.CurrentCore = _coreId;
|
||||
}
|
||||
|
||||
_currentThread = nextThread;
|
||||
}
|
||||
|
||||
public static void PreemptionThreadLoop(KernelContext context)
|
||||
{
|
||||
while (context.Running)
|
||||
{
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
for (int core = 0; core < CpuCoresCount; core++)
|
||||
{
|
||||
RotateScheduledQueue(context, core, PreemptionPriorities[core]);
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
|
||||
Thread.Sleep(RoundRobinTimeQuantumMs);
|
||||
}
|
||||
}
|
||||
|
||||
private static void RotateScheduledQueue(KernelContext context, int core, int prio)
|
||||
{
|
||||
KThread selectedThread = context.PriorityQueue.ScheduledThreadsWithDynamicPriorityFirstOrDefault(core, prio);
|
||||
KThread nextThread = null;
|
||||
|
||||
// Yield priority queue.
|
||||
if (selectedThread != null)
|
||||
{
|
||||
nextThread = context.PriorityQueue.Reschedule(prio, core, selectedThread);
|
||||
}
|
||||
|
||||
static KThread FirstSuitableCandidateOrDefault(KernelContext context, int core, KThread selectedThread, KThread nextThread, Predicate< KThread> predicate)
|
||||
{
|
||||
foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
|
||||
{
|
||||
int suggestedCore = suggested.ActiveCore;
|
||||
if (suggestedCore >= 0)
|
||||
{
|
||||
KThread selectedSuggestedCore = context.PriorityQueue.ScheduledThreadsFirstOrDefault(suggestedCore);
|
||||
|
||||
if (selectedSuggestedCore == suggested || (selectedSuggestedCore != null && selectedSuggestedCore.DynamicPriority < 2))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// If the candidate was scheduled after the current thread, then it's not worth it.
|
||||
if (nextThread == selectedThread ||
|
||||
nextThread == null ||
|
||||
nextThread.LastScheduledTime >= suggested.LastScheduledTime)
|
||||
{
|
||||
if (predicate(suggested))
|
||||
{
|
||||
return suggested;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
// Select candidate threads that could run on this core.
|
||||
// Only take into account threads that are not yet selected.
|
||||
KThread dst = FirstSuitableCandidateOrDefault(context, core, selectedThread, nextThread, x => x.DynamicPriority == prio);
|
||||
|
||||
if (dst != null)
|
||||
{
|
||||
context.PriorityQueue.TransferToCore(prio, core, dst);
|
||||
}
|
||||
|
||||
// If the priority of the currently selected thread is lower or same as the preemption priority,
|
||||
// then try to migrate a thread with lower priority.
|
||||
KThread bestCandidate = context.PriorityQueue.ScheduledThreadsFirstOrDefault(core);
|
||||
|
||||
if (bestCandidate != null && bestCandidate.DynamicPriority >= prio)
|
||||
{
|
||||
dst = FirstSuitableCandidateOrDefault(context, core, selectedThread, nextThread, x => x.DynamicPriority < bestCandidate.DynamicPriority);
|
||||
|
||||
if (dst != null)
|
||||
{
|
||||
context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);
|
||||
}
|
||||
}
|
||||
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
public static void Yield(KernelContext context)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
if (!currentThread.IsSchedulable)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.SchedFlags != ThreadSchedState.Running)
|
||||
{
|
||||
context.CriticalSection.Leave();
|
||||
return;
|
||||
}
|
||||
|
||||
KThread nextThread = context.PriorityQueue.Reschedule(currentThread.DynamicPriority, currentThread.ActiveCore, currentThread);
|
||||
|
||||
if (nextThread != currentThread)
|
||||
{
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
public static void YieldWithLoadBalancing(KernelContext context)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
if (!currentThread.IsSchedulable)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.SchedFlags != ThreadSchedState.Running)
|
||||
{
|
||||
context.CriticalSection.Leave();
|
||||
return;
|
||||
}
|
||||
|
||||
int prio = currentThread.DynamicPriority;
|
||||
int core = currentThread.ActiveCore;
|
||||
|
||||
// Move current thread to the end of the queue.
|
||||
KThread nextThread = context.PriorityQueue.Reschedule(prio, core, currentThread);
|
||||
|
||||
static KThread FirstSuitableCandidateOrDefault(KernelContext context, int core, KThread nextThread, int lessThanOrEqualPriority)
|
||||
{
|
||||
foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
|
||||
{
|
||||
int suggestedCore = suggested.ActiveCore;
|
||||
if (suggestedCore >= 0)
|
||||
{
|
||||
KThread selectedSuggestedCore = context.Schedulers[suggestedCore]._state.SelectedThread;
|
||||
|
||||
if (selectedSuggestedCore == suggested || (selectedSuggestedCore != null && selectedSuggestedCore.DynamicPriority < 2))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// If the candidate was scheduled after the current thread, then it's not worth it,
|
||||
// unless the priority is higher than the current one.
|
||||
if (suggested.LastScheduledTime <= nextThread.LastScheduledTime ||
|
||||
suggested.DynamicPriority < nextThread.DynamicPriority)
|
||||
{
|
||||
if (suggested.DynamicPriority <= lessThanOrEqualPriority)
|
||||
{
|
||||
return suggested;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
KThread dst = FirstSuitableCandidateOrDefault(context, core, nextThread, prio);
|
||||
|
||||
if (dst != null)
|
||||
{
|
||||
context.PriorityQueue.TransferToCore(dst.DynamicPriority, core, dst);
|
||||
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
else if (currentThread != nextThread)
|
||||
{
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
public static void YieldToAnyThread(KernelContext context)
|
||||
{
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
if (!currentThread.IsSchedulable)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
context.CriticalSection.Enter();
|
||||
|
||||
if (currentThread.SchedFlags != ThreadSchedState.Running)
|
||||
{
|
||||
context.CriticalSection.Leave();
|
||||
return;
|
||||
}
|
||||
|
||||
int core = currentThread.ActiveCore;
|
||||
|
||||
context.PriorityQueue.TransferToCore(currentThread.DynamicPriority, -1, currentThread);
|
||||
|
||||
if (!context.PriorityQueue.HasScheduledThreads(core))
|
||||
{
|
||||
KThread selectedThread = null;
|
||||
|
||||
foreach (KThread suggested in context.PriorityQueue.SuggestedThreads(core))
|
||||
{
|
||||
int suggestedCore = suggested.ActiveCore;
|
||||
|
||||
if (suggestedCore < 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
KThread firstCandidate = context.PriorityQueue.ScheduledThreadsFirstOrDefault(suggestedCore);
|
||||
|
||||
if (firstCandidate == suggested)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (firstCandidate == null || firstCandidate.DynamicPriority >= 2)
|
||||
{
|
||||
context.PriorityQueue.TransferToCore(suggested.DynamicPriority, core, suggested);
|
||||
}
|
||||
|
||||
selectedThread = suggested;
|
||||
break;
|
||||
}
|
||||
|
||||
if (currentThread != selectedThread)
|
||||
{
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
context.ThreadReselectionRequested = true;
|
||||
}
|
||||
|
||||
context.CriticalSection.Leave();
|
||||
}
|
||||
|
||||
public void Dispose()
|
||||
{
|
||||
// Ensure that the idle thread is not blocked and can exit.
|
||||
lock (_idleInterruptEventLock)
|
||||
{
|
||||
if (_idleInterruptEvent != null)
|
||||
{
|
||||
_idleInterruptEvent.Set();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
142
src/Ryujinx.HLE/HOS/Kernel/Threading/KSynchronization.cs
Normal file
142
src/Ryujinx.HLE/HOS/Kernel/Threading/KSynchronization.cs
Normal file
|
@ -0,0 +1,142 @@
|
|||
using Ryujinx.HLE.HOS.Kernel.Common;
|
||||
using Ryujinx.Horizon.Common;
|
||||
using System;
|
||||
using System.Buffers;
|
||||
using System.Collections.Generic;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
class KSynchronization
|
||||
{
|
||||
private KernelContext _context;
|
||||
|
||||
public KSynchronization(KernelContext context)
|
||||
{
|
||||
_context = context;
|
||||
}
|
||||
|
||||
public Result WaitFor(Span<KSynchronizationObject> syncObjs, long timeout, out int handleIndex)
|
||||
{
|
||||
handleIndex = 0;
|
||||
|
||||
Result result = KernelResult.TimedOut;
|
||||
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
// Check if objects are already signaled before waiting.
|
||||
for (int index = 0; index < syncObjs.Length; index++)
|
||||
{
|
||||
if (!syncObjs[index].IsSignaled())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
handleIndex = index;
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return Result.Success;
|
||||
}
|
||||
|
||||
if (timeout == 0)
|
||||
{
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
KThread currentThread = KernelStatic.GetCurrentThread();
|
||||
|
||||
if (currentThread.TerminationRequested)
|
||||
{
|
||||
result = KernelResult.ThreadTerminating;
|
||||
}
|
||||
else if (currentThread.SyncCancelled)
|
||||
{
|
||||
currentThread.SyncCancelled = false;
|
||||
|
||||
result = KernelResult.Cancelled;
|
||||
}
|
||||
else
|
||||
{
|
||||
LinkedListNode<KThread>[] syncNodesArray = ArrayPool<LinkedListNode<KThread>>.Shared.Rent(syncObjs.Length);
|
||||
|
||||
Span<LinkedListNode<KThread>> syncNodes = syncNodesArray.AsSpan(0, syncObjs.Length);
|
||||
|
||||
for (int index = 0; index < syncObjs.Length; index++)
|
||||
{
|
||||
syncNodes[index] = syncObjs[index].AddWaitingThread(currentThread);
|
||||
}
|
||||
|
||||
currentThread.WaitingSync = true;
|
||||
currentThread.SignaledObj = null;
|
||||
currentThread.ObjSyncResult = result;
|
||||
|
||||
currentThread.Reschedule(ThreadSchedState.Paused);
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
currentThread.WaitingSync = false;
|
||||
|
||||
if (timeout > 0)
|
||||
{
|
||||
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
result = currentThread.ObjSyncResult;
|
||||
|
||||
handleIndex = -1;
|
||||
|
||||
for (int index = 0; index < syncObjs.Length; index++)
|
||||
{
|
||||
syncObjs[index].RemoveWaitingThread(syncNodes[index]);
|
||||
|
||||
if (syncObjs[index] == currentThread.SignaledObj)
|
||||
{
|
||||
handleIndex = index;
|
||||
}
|
||||
}
|
||||
|
||||
ArrayPool<LinkedListNode<KThread>>.Shared.Return(syncNodesArray);
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
public void SignalObject(KSynchronizationObject syncObj)
|
||||
{
|
||||
_context.CriticalSection.Enter();
|
||||
|
||||
if (syncObj.IsSignaled())
|
||||
{
|
||||
LinkedListNode<KThread> node = syncObj.WaitingThreads.First;
|
||||
|
||||
while (node != null)
|
||||
{
|
||||
KThread thread = node.Value;
|
||||
|
||||
if ((thread.SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.Paused)
|
||||
{
|
||||
thread.SignaledObj = syncObj;
|
||||
thread.ObjSyncResult = Result.Success;
|
||||
|
||||
thread.Reschedule(ThreadSchedState.Running);
|
||||
}
|
||||
|
||||
node = node.Next;
|
||||
}
|
||||
}
|
||||
|
||||
_context.CriticalSection.Leave();
|
||||
}
|
||||
}
|
||||
}
|
1438
src/Ryujinx.HLE/HOS/Kernel/Threading/KThread.cs
Normal file
1438
src/Ryujinx.HLE/HOS/Kernel/Threading/KThread.cs
Normal file
File diff suppressed because it is too large
Load diff
33
src/Ryujinx.HLE/HOS/Kernel/Threading/KThreadContext.cs
Normal file
33
src/Ryujinx.HLE/HOS/Kernel/Threading/KThreadContext.cs
Normal file
|
@ -0,0 +1,33 @@
|
|||
using Ryujinx.Cpu;
|
||||
using Ryujinx.Horizon.Common;
|
||||
using System.Threading;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
class KThreadContext : IThreadContext
|
||||
{
|
||||
private readonly IExecutionContext _context;
|
||||
|
||||
public bool Running => _context.Running;
|
||||
public ulong TlsAddress => (ulong)_context.TpidrroEl0;
|
||||
|
||||
public ulong GetX(int index) => _context.GetX(index);
|
||||
|
||||
private int _locked;
|
||||
|
||||
public KThreadContext(IExecutionContext context)
|
||||
{
|
||||
_context = context;
|
||||
}
|
||||
|
||||
public bool Lock()
|
||||
{
|
||||
return Interlocked.Exchange(ref _locked, 1) == 0;
|
||||
}
|
||||
|
||||
public void Unlock()
|
||||
{
|
||||
Interlocked.Exchange(ref _locked, 0);
|
||||
}
|
||||
}
|
||||
}
|
25
src/Ryujinx.HLE/HOS/Kernel/Threading/KWritableEvent.cs
Normal file
25
src/Ryujinx.HLE/HOS/Kernel/Threading/KWritableEvent.cs
Normal file
|
@ -0,0 +1,25 @@
|
|||
using Ryujinx.HLE.HOS.Kernel.Common;
|
||||
using Ryujinx.Horizon.Common;
|
||||
|
||||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
class KWritableEvent : KAutoObject
|
||||
{
|
||||
private readonly KEvent _parent;
|
||||
|
||||
public KWritableEvent(KernelContext context, KEvent parent) : base(context)
|
||||
{
|
||||
_parent = parent;
|
||||
}
|
||||
|
||||
public void Signal()
|
||||
{
|
||||
_parent.ReadableEvent.Signal();
|
||||
}
|
||||
|
||||
public Result Clear()
|
||||
{
|
||||
return _parent.ReadableEvent.Clear();
|
||||
}
|
||||
}
|
||||
}
|
9
src/Ryujinx.HLE/HOS/Kernel/Threading/SignalType.cs
Normal file
9
src/Ryujinx.HLE/HOS/Kernel/Threading/SignalType.cs
Normal file
|
@ -0,0 +1,9 @@
|
|||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
enum SignalType
|
||||
{
|
||||
Signal = 0,
|
||||
SignalAndIncrementIfEqual = 1,
|
||||
SignalAndModifyIfEqual = 2
|
||||
}
|
||||
}
|
20
src/Ryujinx.HLE/HOS/Kernel/Threading/ThreadSchedState.cs
Normal file
20
src/Ryujinx.HLE/HOS/Kernel/Threading/ThreadSchedState.cs
Normal file
|
@ -0,0 +1,20 @@
|
|||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
enum ThreadSchedState : ushort
|
||||
{
|
||||
LowMask = 0xf,
|
||||
HighMask = 0xfff0,
|
||||
ForcePauseMask = 0x1f0,
|
||||
|
||||
ProcessPauseFlag = 1 << 4,
|
||||
ThreadPauseFlag = 1 << 5,
|
||||
ProcessDebugPauseFlag = 1 << 6,
|
||||
BacktracePauseFlag = 1 << 7,
|
||||
KernelInitPauseFlag = 1 << 8,
|
||||
|
||||
None = 0,
|
||||
Paused = 1,
|
||||
Running = 2,
|
||||
TerminationPending = 3
|
||||
}
|
||||
}
|
10
src/Ryujinx.HLE/HOS/Kernel/Threading/ThreadType.cs
Normal file
10
src/Ryujinx.HLE/HOS/Kernel/Threading/ThreadType.cs
Normal file
|
@ -0,0 +1,10 @@
|
|||
namespace Ryujinx.HLE.HOS.Kernel.Threading
|
||||
{
|
||||
enum ThreadType
|
||||
{
|
||||
Dummy,
|
||||
Kernel,
|
||||
Kernel2,
|
||||
User
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue