Ryujinx/src/Ryujinx.Graphics.Shader/Translation/EmitterContext.cs
gdkchan b423197619
Delete ShaderConfig and organize shader resources/definitions better (#5509)
* Move some properties out of ShaderConfig

* Stop using ShaderConfig on backends

* Replace ShaderConfig usages on Translator and passes

* Move remaining properties out of ShaderConfig and delete ShaderConfig

* Remove ResourceManager property from TranslatorContext

* Move Rewriter passes to separate transform pass files

* Fix TransformPasses.RunPass on cases where a node is removed

* Move remaining ClipDistancePrimitivesWritten and UsedFeatures updates to decode stage

* Reduce excessive parameter passing a bit by using structs more

* Remove binding parameter from ShaderProperties methods since it is redundant

* Replace decoder instruction checks with switch statement

* Put GLSL on the same plan as SPIR-V for input/output declaration

* Stop mutating TranslatorContext state when Translate is called

* Pass most of the graphics state using a struct instead of individual query methods

* Auto-format

* Auto-format

* Add backend logging interface

* Auto-format

* Remove unnecessary use of interpolated strings

* Remove more modifications of AttributeUsage after decode

* PR feedback

* gl_Layer is not supported on compute
2023-08-13 22:26:42 -03:00

471 lines
20 KiB
C#

using Ryujinx.Graphics.Shader.Decoders;
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using System.Collections.Generic;
using System.Diagnostics;
using System.Numerics;
using System.Runtime.CompilerServices;
using static Ryujinx.Graphics.Shader.IntermediateRepresentation.OperandHelper;
namespace Ryujinx.Graphics.Shader.Translation
{
class EmitterContext
{
public DecodedProgram Program { get; }
public TranslatorContext TranslatorContext { get; }
public ResourceManager ResourceManager { get; }
public bool IsNonMain { get; }
public Block CurrBlock { get; set; }
public InstOp CurrOp { get; set; }
public int OperationsCount => _operations.Count;
private readonly struct BrxTarget
{
public readonly Operand Selector;
public readonly int ExpectedValue;
public readonly ulong NextTargetAddress;
public BrxTarget(Operand selector, int expectedValue, ulong nextTargetAddress)
{
Selector = selector;
ExpectedValue = expectedValue;
NextTargetAddress = nextTargetAddress;
}
}
private class BlockLabel
{
public readonly Operand Label;
public BrxTarget BrxTarget;
public BlockLabel(Operand label)
{
Label = label;
}
}
private readonly List<Operation> _operations;
private readonly Dictionary<ulong, BlockLabel> _labels;
public EmitterContext()
{
_operations = new List<Operation>();
_labels = new Dictionary<ulong, BlockLabel>();
}
public EmitterContext(
TranslatorContext translatorContext,
ResourceManager resourceManager,
DecodedProgram program,
bool isNonMain) : this()
{
TranslatorContext = translatorContext;
ResourceManager = resourceManager;
Program = program;
IsNonMain = isNonMain;
EmitStart();
}
private void EmitStart()
{
if (TranslatorContext.Definitions.Stage == ShaderStage.Vertex &&
TranslatorContext.Options.TargetApi == TargetApi.Vulkan &&
(TranslatorContext.Options.Flags & TranslationFlags.VertexA) == 0)
{
// Vulkan requires the point size to be always written on the shader if the primitive topology is points.
this.Store(StorageKind.Output, IoVariable.PointSize, null, ConstF(TranslatorContext.Definitions.PointSize));
}
}
public T GetOp<T>() where T : unmanaged
{
Debug.Assert(Unsafe.SizeOf<T>() == sizeof(ulong));
ulong op = CurrOp.RawOpCode;
return Unsafe.As<ulong, T>(ref op);
}
public Operand Add(Instruction inst, Operand dest = null, params Operand[] sources)
{
Operation operation = new(inst, dest, sources);
_operations.Add(operation);
return dest;
}
public Operand Add(Instruction inst, StorageKind storageKind, Operand dest = null, params Operand[] sources)
{
Operation operation = new(inst, storageKind, dest, sources);
_operations.Add(operation);
return dest;
}
public (Operand, Operand) Add(Instruction inst, (Operand, Operand) dest, params Operand[] sources)
{
Operand[] dests = new[] { dest.Item1, dest.Item2 };
Operation operation = new(inst, 0, dests, sources);
Add(operation);
return dest;
}
public void Add(Operation operation)
{
_operations.Add(operation);
}
public void MarkLabel(Operand label)
{
Add(Instruction.MarkLabel, label);
}
public Operand GetLabel(ulong address)
{
return EnsureBlockLabel(address).Label;
}
public void SetBrxTarget(ulong address, Operand selector, int targetValue, ulong nextTargetAddress)
{
BlockLabel blockLabel = EnsureBlockLabel(address);
Debug.Assert(blockLabel.BrxTarget.Selector == null);
blockLabel.BrxTarget = new BrxTarget(selector, targetValue, nextTargetAddress);
}
public void EnterBlock(ulong address)
{
BlockLabel blockLabel = EnsureBlockLabel(address);
MarkLabel(blockLabel.Label);
BrxTarget brxTarget = blockLabel.BrxTarget;
if (brxTarget.Selector != null)
{
this.BranchIfFalse(GetLabel(brxTarget.NextTargetAddress), this.ICompareEqual(brxTarget.Selector, Const(brxTarget.ExpectedValue)));
}
}
private BlockLabel EnsureBlockLabel(ulong address)
{
if (!_labels.TryGetValue(address, out BlockLabel blockLabel))
{
blockLabel = new BlockLabel(Label());
_labels.Add(address, blockLabel);
}
return blockLabel;
}
public void PrepareForVertexReturn()
{
if (!TranslatorContext.GpuAccessor.QueryHostSupportsTransformFeedback() && TranslatorContext.GpuAccessor.QueryTransformFeedbackEnabled())
{
Operand vertexCount = this.Load(StorageKind.StorageBuffer, Constants.TfeInfoBinding, Const(1));
for (int tfbIndex = 0; tfbIndex < Constants.TfeBuffersCount; tfbIndex++)
{
var locations = TranslatorContext.GpuAccessor.QueryTransformFeedbackVaryingLocations(tfbIndex);
var stride = TranslatorContext.GpuAccessor.QueryTransformFeedbackStride(tfbIndex);
Operand baseOffset = this.Load(StorageKind.StorageBuffer, Constants.TfeInfoBinding, Const(0), Const(tfbIndex));
Operand baseVertex = this.Load(StorageKind.Input, IoVariable.BaseVertex);
Operand baseInstance = this.Load(StorageKind.Input, IoVariable.BaseInstance);
Operand vertexIndex = this.Load(StorageKind.Input, IoVariable.VertexIndex);
Operand instanceIndex = this.Load(StorageKind.Input, IoVariable.InstanceIndex);
Operand outputVertexOffset = this.ISubtract(vertexIndex, baseVertex);
Operand outputInstanceOffset = this.ISubtract(instanceIndex, baseInstance);
Operand outputBaseVertex = this.IMultiply(outputInstanceOffset, vertexCount);
Operand vertexOffset = this.IMultiply(this.IAdd(outputBaseVertex, outputVertexOffset), Const(stride / 4));
baseOffset = this.IAdd(baseOffset, vertexOffset);
for (int j = 0; j < locations.Length; j++)
{
byte location = locations[j];
if (location == 0xff)
{
continue;
}
Operand offset = this.IAdd(baseOffset, Const(j));
Operand value = Instructions.AttributeMap.GenerateAttributeLoad(this, null, location * 4, isOutput: true, isPerPatch: false);
this.Store(StorageKind.StorageBuffer, Constants.TfeBufferBaseBinding + tfbIndex, Const(0), offset, value);
}
}
}
if (TranslatorContext.Definitions.ViewportTransformDisable)
{
Operand x = this.Load(StorageKind.Output, IoVariable.Position, null, Const(0));
Operand y = this.Load(StorageKind.Output, IoVariable.Position, null, Const(1));
Operand xScale = this.Load(StorageKind.ConstantBuffer, SupportBuffer.Binding, Const((int)SupportBufferField.ViewportInverse), Const(0));
Operand yScale = this.Load(StorageKind.ConstantBuffer, SupportBuffer.Binding, Const((int)SupportBufferField.ViewportInverse), Const(1));
Operand negativeOne = ConstF(-1.0f);
this.Store(StorageKind.Output, IoVariable.Position, null, Const(0), this.FPFusedMultiplyAdd(x, xScale, negativeOne));
this.Store(StorageKind.Output, IoVariable.Position, null, Const(1), this.FPFusedMultiplyAdd(y, yScale, negativeOne));
}
if (TranslatorContext.Definitions.DepthMode && !TranslatorContext.GpuAccessor.QueryHostSupportsDepthClipControl())
{
Operand z = this.Load(StorageKind.Output, IoVariable.Position, null, Const(2));
Operand w = this.Load(StorageKind.Output, IoVariable.Position, null, Const(3));
Operand halfW = this.FPMultiply(w, ConstF(0.5f));
this.Store(StorageKind.Output, IoVariable.Position, null, Const(2), this.FPFusedMultiplyAdd(z, ConstF(0.5f), halfW));
}
if (TranslatorContext.Definitions.Stage != ShaderStage.Geometry && TranslatorContext.HasLayerInputAttribute)
{
int attrVecIndex = TranslatorContext.GpLayerInputAttribute >> 2;
int attrComponentIndex = TranslatorContext.GpLayerInputAttribute & 3;
Operand layer = this.Load(StorageKind.Output, IoVariable.UserDefined, null, Const(attrVecIndex), Const(attrComponentIndex));
this.Store(StorageKind.Output, IoVariable.Layer, null, layer);
}
}
public void PrepareForVertexReturn(out Operand oldXLocal, out Operand oldYLocal, out Operand oldZLocal)
{
if (TranslatorContext.Definitions.ViewportTransformDisable)
{
oldXLocal = Local();
this.Copy(oldXLocal, this.Load(StorageKind.Output, IoVariable.Position, null, Const(0)));
oldYLocal = Local();
this.Copy(oldYLocal, this.Load(StorageKind.Output, IoVariable.Position, null, Const(1)));
}
else
{
oldXLocal = null;
oldYLocal = null;
}
if (TranslatorContext.Definitions.DepthMode && !TranslatorContext.GpuAccessor.QueryHostSupportsDepthClipControl())
{
oldZLocal = Local();
this.Copy(oldZLocal, this.Load(StorageKind.Output, IoVariable.Position, null, Const(2)));
}
else
{
oldZLocal = null;
}
PrepareForVertexReturn();
}
public bool PrepareForReturn()
{
if (IsNonMain)
{
return true;
}
if (TranslatorContext.Definitions.LastInVertexPipeline &&
(TranslatorContext.Definitions.Stage == ShaderStage.Vertex || TranslatorContext.Definitions.Stage == ShaderStage.TessellationEvaluation) &&
(TranslatorContext.Options.Flags & TranslationFlags.VertexA) == 0)
{
PrepareForVertexReturn();
}
else if (TranslatorContext.Definitions.Stage == ShaderStage.Geometry)
{
void WritePositionOutput(int primIndex)
{
Operand x = this.Load(StorageKind.Input, IoVariable.Position, Const(primIndex), Const(0));
Operand y = this.Load(StorageKind.Input, IoVariable.Position, Const(primIndex), Const(1));
Operand z = this.Load(StorageKind.Input, IoVariable.Position, Const(primIndex), Const(2));
Operand w = this.Load(StorageKind.Input, IoVariable.Position, Const(primIndex), Const(3));
this.Store(StorageKind.Output, IoVariable.Position, null, Const(0), x);
this.Store(StorageKind.Output, IoVariable.Position, null, Const(1), y);
this.Store(StorageKind.Output, IoVariable.Position, null, Const(2), z);
this.Store(StorageKind.Output, IoVariable.Position, null, Const(3), w);
}
void WriteUserDefinedOutput(int index, int primIndex)
{
Operand x = this.Load(StorageKind.Input, IoVariable.UserDefined, Const(index), Const(primIndex), Const(0));
Operand y = this.Load(StorageKind.Input, IoVariable.UserDefined, Const(index), Const(primIndex), Const(1));
Operand z = this.Load(StorageKind.Input, IoVariable.UserDefined, Const(index), Const(primIndex), Const(2));
Operand w = this.Load(StorageKind.Input, IoVariable.UserDefined, Const(index), Const(primIndex), Const(3));
this.Store(StorageKind.Output, IoVariable.UserDefined, null, Const(index), Const(0), x);
this.Store(StorageKind.Output, IoVariable.UserDefined, null, Const(index), Const(1), y);
this.Store(StorageKind.Output, IoVariable.UserDefined, null, Const(index), Const(2), z);
this.Store(StorageKind.Output, IoVariable.UserDefined, null, Const(index), Const(3), w);
}
if (TranslatorContext.Definitions.GpPassthrough && !TranslatorContext.GpuAccessor.QueryHostSupportsGeometryShaderPassthrough())
{
int inputVertices = TranslatorContext.Definitions.InputTopology.ToInputVertices();
for (int primIndex = 0; primIndex < inputVertices; primIndex++)
{
WritePositionOutput(primIndex);
int passthroughAttributes = TranslatorContext.AttributeUsage.PassthroughAttributes;
while (passthroughAttributes != 0)
{
int index = BitOperations.TrailingZeroCount(passthroughAttributes);
WriteUserDefinedOutput(index, primIndex);
passthroughAttributes &= ~(1 << index);
}
this.EmitVertex();
}
this.EndPrimitive();
}
}
else if (TranslatorContext.Definitions.Stage == ShaderStage.Fragment)
{
GenerateAlphaToCoverageDitherDiscard();
bool supportsBgra = TranslatorContext.GpuAccessor.QueryHostSupportsBgraFormat();
if (TranslatorContext.Definitions.OmapDepth)
{
Operand src = Register(TranslatorContext.GetDepthRegister(), RegisterType.Gpr);
this.Store(StorageKind.Output, IoVariable.FragmentOutputDepth, null, src);
}
AlphaTestOp alphaTestOp = TranslatorContext.Definitions.AlphaTestCompare;
if (alphaTestOp != AlphaTestOp.Always)
{
if (alphaTestOp == AlphaTestOp.Never)
{
this.Discard();
}
else if ((TranslatorContext.Definitions.OmapTargets & 8) != 0)
{
Instruction comparator = alphaTestOp switch
{
AlphaTestOp.Equal => Instruction.CompareEqual,
AlphaTestOp.Greater => Instruction.CompareGreater,
AlphaTestOp.GreaterOrEqual => Instruction.CompareGreaterOrEqual,
AlphaTestOp.Less => Instruction.CompareLess,
AlphaTestOp.LessOrEqual => Instruction.CompareLessOrEqual,
AlphaTestOp.NotEqual => Instruction.CompareNotEqual,
_ => 0,
};
Debug.Assert(comparator != 0, $"Invalid alpha test operation \"{alphaTestOp}\".");
Operand alpha = Register(3, RegisterType.Gpr);
Operand alphaRef = ConstF(TranslatorContext.Definitions.AlphaTestReference);
Operand alphaPass = Add(Instruction.FP32 | comparator, Local(), alpha, alphaRef);
Operand alphaPassLabel = Label();
this.BranchIfTrue(alphaPassLabel, alphaPass);
this.Discard();
this.MarkLabel(alphaPassLabel);
}
}
// We don't need to output anything if alpha test always fails.
if (alphaTestOp == AlphaTestOp.Never)
{
return false;
}
int regIndexBase = 0;
for (int rtIndex = 0; rtIndex < 8; rtIndex++)
{
for (int component = 0; component < 4; component++)
{
bool componentEnabled = (TranslatorContext.Definitions.OmapTargets & (1 << (rtIndex * 4 + component))) != 0;
if (!componentEnabled)
{
continue;
}
Operand src = Register(regIndexBase + component, RegisterType.Gpr);
// Perform B <-> R swap if needed, for BGRA formats (not supported on OpenGL).
if (!supportsBgra && (component == 0 || component == 2))
{
Operand isBgra = this.Load(StorageKind.ConstantBuffer, SupportBuffer.Binding, Const((int)SupportBufferField.FragmentIsBgra), Const(rtIndex));
Operand lblIsBgra = Label();
Operand lblEnd = Label();
this.BranchIfTrue(lblIsBgra, isBgra);
this.Store(StorageKind.Output, IoVariable.FragmentOutputColor, null, Const(rtIndex), Const(component), src);
this.Branch(lblEnd);
MarkLabel(lblIsBgra);
this.Store(StorageKind.Output, IoVariable.FragmentOutputColor, null, Const(rtIndex), Const(2 - component), src);
MarkLabel(lblEnd);
}
else
{
this.Store(StorageKind.Output, IoVariable.FragmentOutputColor, null, Const(rtIndex), Const(component), src);
}
}
bool targetEnabled = (TranslatorContext.Definitions.OmapTargets & (0xf << (rtIndex * 4))) != 0;
if (targetEnabled)
{
regIndexBase += 4;
}
}
}
return true;
}
private void GenerateAlphaToCoverageDitherDiscard()
{
// If the feature is disabled, or alpha is not written, then we're done.
if (!TranslatorContext.Definitions.AlphaToCoverageDitherEnable || (TranslatorContext.Definitions.OmapTargets & 8) == 0)
{
return;
}
// 11 11 11 10 10 10 10 00
// 11 01 01 01 01 00 00 00
Operand ditherMask = Const(unchecked((int)0xfbb99110u));
Operand fragCoordX = this.Load(StorageKind.Input, IoVariable.FragmentCoord, null, Const(0));
Operand fragCoordY = this.Load(StorageKind.Input, IoVariable.FragmentCoord, null, Const(1));
Operand x = this.BitwiseAnd(this.FP32ConvertToU32(fragCoordX), Const(1));
Operand y = this.BitwiseAnd(this.FP32ConvertToU32(fragCoordY), Const(1));
Operand xy = this.BitwiseOr(x, this.ShiftLeft(y, Const(1)));
Operand alpha = Register(3, RegisterType.Gpr);
Operand scaledAlpha = this.FPMultiply(this.FPSaturate(alpha), ConstF(8));
Operand quantizedAlpha = this.IMinimumU32(this.FP32ConvertToU32(scaledAlpha), Const(7));
Operand shift = this.BitwiseOr(this.ShiftLeft(quantizedAlpha, Const(2)), xy);
Operand opaque = this.BitwiseAnd(this.ShiftRightU32(ditherMask, shift), Const(1));
Operand a2cDitherEndLabel = Label();
this.BranchIfTrue(a2cDitherEndLabel, opaque);
this.Discard();
this.MarkLabel(a2cDitherEndLabel);
}
public Operation[] GetOperations()
{
return _operations.ToArray();
}
}
}