Core timing 2.0 (#4913)

* Core::Timing: Add multiple timer, one for each core

* revert clang-format; work on tests for CoreTiming

* Kernel:: Add support for multiple cores, asserts in HandleSyncRequest because Thread->status == WaitIPC

* Add some TRACE_LOGs

* fix tests

* make some adjustments to qt-debugger, cheats and gdbstub(probably still broken)

* Make ARM_Interface::id private, rework ARM_Interface ctor

* ReRename TimingManager to Timing for smaler diff

* addressed review comments
This commit is contained in:
Ben 2020-02-21 19:31:32 +01:00 committed by GitHub
parent e3dbdcbdff
commit 55ec7031cc
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
32 changed files with 760 additions and 535 deletions

View file

@ -134,62 +134,6 @@ struct TimingEventType {
class Timing {
public:
~Timing();
/**
* This should only be called from the emu thread, if you are calling it any other thread, you
* are doing something evil
*/
u64 GetTicks() const;
u64 GetIdleTicks() const;
void AddTicks(u64 ticks);
/**
* Returns the event_type identifier. if name is not unique, it will assert.
*/
TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback);
/**
* After the first Advance, the slice lengths and the downcount will be reduced whenever an
* event is scheduled earlier than the current values. Scheduling from a callback will not
* update the downcount until the Advance() completes.
*/
void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata = 0);
/**
* This is to be called when outside of hle threads, such as the graphics thread, wants to
* schedule things to be executed on the main thread.
* Not that this doesn't change slice_length and thus events scheduled by this might be called
* with a delay of up to MAX_SLICE_LENGTH
*/
void ScheduleEventThreadsafe(s64 cycles_into_future, const TimingEventType* event_type,
u64 userdata);
void UnscheduleEvent(const TimingEventType* event_type, u64 userdata);
/// We only permit one event of each type in the queue at a time.
void RemoveEvent(const TimingEventType* event_type);
void RemoveNormalAndThreadsafeEvent(const TimingEventType* event_type);
/** Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends
* the previous timing slice and begins the next one, you must Advance from the previous
* slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an
* Advance() is required to initialize the slice length before the first cycle of emulated
* instructions is executed.
*/
void Advance();
void MoveEvents();
/// Pretend that the main CPU has executed enough cycles to reach the next event.
void Idle();
void ForceExceptionCheck(s64 cycles);
std::chrono::microseconds GetGlobalTimeUs() const;
s64 GetDowncount() const;
private:
struct Event {
s64 time;
u64 fifo_order;
@ -202,33 +146,93 @@ private:
static constexpr int MAX_SLICE_LENGTH = 20000;
class Timer {
public:
~Timer();
s64 GetMaxSliceLength() const;
void Advance(s64 max_slice_length = MAX_SLICE_LENGTH);
void Idle();
u64 GetTicks() const;
u64 GetIdleTicks() const;
void AddTicks(u64 ticks);
s64 GetDowncount() const;
void ForceExceptionCheck(s64 cycles);
void MoveEvents();
private:
friend class Timing;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accomodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
// the queue for storing the events from other threads threadsafe until they will be added
// to the event_queue by the emu thread
Common::MPSCQueue<Event> ts_queue;
// Are we in a function that has been called from Advance()
// If events are sheduled from a function that gets called from Advance(),
// don't change slice_length and downcount.
// The time between CoreTiming being intialized and the first call to Advance() is
// considered the slice boundary between slice -1 and slice 0. Dispatcher loops must call
// Advance() before executing the first cycle of each slice to prepare the slice length and
// downcount for that slice.
bool is_timer_sane = true;
s64 slice_length = MAX_SLICE_LENGTH;
s64 downcount = MAX_SLICE_LENGTH;
s64 executed_ticks = 0;
u64 idled_cycles;
};
explicit Timing(std::size_t num_cores);
~Timing(){};
/**
* Returns the event_type identifier. if name is not unique, it will assert.
*/
TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback);
void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata = 0,
std::size_t core_id = std::numeric_limits<std::size_t>::max());
void UnscheduleEvent(const TimingEventType* event_type, u64 userdata);
/// We only permit one event of each type in the queue at a time.
void RemoveEvent(const TimingEventType* event_type);
void SetCurrentTimer(std::size_t core_id);
s64 GetTicks() const;
s64 GetGlobalTicks() const;
void AddToGlobalTicks(s64 ticks) {
global_timer += ticks;
}
std::chrono::microseconds GetGlobalTimeUs() const;
std::shared_ptr<Timer> GetTimer(std::size_t cpu_id);
private:
s64 global_timer = 0;
s64 slice_length = MAX_SLICE_LENGTH;
s64 downcount = MAX_SLICE_LENGTH;
// unordered_map stores each element separately as a linked list node so pointers to
// elements remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, TimingEventType> event_types;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accomodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
// the queue for storing the events from other threads threadsafe until they will be added
// to the event_queue by the emu thread
Common::MPSCQueue<Event> ts_queue;
s64 idled_cycles = 0;
// Are we in a function that has been called from Advance()
// If events are sheduled from a function that gets called from Advance(),
// don't change slice_length and downcount.
// The time between CoreTiming being intialized and the first call to Advance() is considered
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
// executing the first cycle of each slice to prepare the slice length and downcount for
// that slice.
bool is_global_timer_sane = true;
std::vector<std::shared_ptr<Timer>> timers;
std::shared_ptr<Timer> current_timer;
};
} // namespace Core