Sources: Run clang-format on everything.
This commit is contained in:
parent
fe948af095
commit
dc8479928c
386 changed files with 19560 additions and 18080 deletions
|
@ -15,16 +15,16 @@
|
|||
#include "common/microprofile.h"
|
||||
#include "common/vector_math.h"
|
||||
|
||||
#include "core/memory.h"
|
||||
#include "core/hw/gpu.h"
|
||||
#include "core/memory.h"
|
||||
|
||||
#include "video_core/debug_utils/debug_utils.h"
|
||||
#include "video_core/pica.h"
|
||||
#include "video_core/pica_state.h"
|
||||
#include "video_core/pica_types.h"
|
||||
#include "video_core/rasterizer.h"
|
||||
#include "video_core/utils.h"
|
||||
#include "video_core/shader/shader.h"
|
||||
#include "video_core/utils.h"
|
||||
|
||||
namespace Pica {
|
||||
|
||||
|
@ -39,8 +39,10 @@ static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
|
|||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
|
||||
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u32 bytes_per_pixel =
|
||||
GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
|
||||
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
|
||||
coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset;
|
||||
|
||||
switch (framebuffer.color_format) {
|
||||
|
@ -65,7 +67,8 @@ static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
|
|||
break;
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", framebuffer.color_format.Value());
|
||||
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x",
|
||||
framebuffer.color_format.Value());
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
}
|
||||
|
@ -77,8 +80,10 @@ static const Math::Vec4<u8> GetPixel(int x, int y) {
|
|||
y = framebuffer.height - y;
|
||||
|
||||
const u32 coarse_y = y & ~7;
|
||||
u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
|
||||
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u32 bytes_per_pixel =
|
||||
GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
|
||||
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
|
||||
coarse_y * framebuffer.width * bytes_per_pixel;
|
||||
u8* src_pixel = Memory::GetPhysicalPointer(addr) + src_offset;
|
||||
|
||||
switch (framebuffer.color_format) {
|
||||
|
@ -98,7 +103,8 @@ static const Math::Vec4<u8> GetPixel(int x, int y) {
|
|||
return Color::DecodeRGBA4(src_pixel);
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", framebuffer.color_format.Value());
|
||||
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x",
|
||||
framebuffer.color_format.Value());
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
|
@ -120,16 +126,16 @@ static u32 GetDepth(int x, int y) {
|
|||
u8* src_pixel = depth_buffer + src_offset;
|
||||
|
||||
switch (framebuffer.depth_format) {
|
||||
case Regs::DepthFormat::D16:
|
||||
return Color::DecodeD16(src_pixel);
|
||||
case Regs::DepthFormat::D24:
|
||||
return Color::DecodeD24(src_pixel);
|
||||
case Regs::DepthFormat::D24S8:
|
||||
return Color::DecodeD24S8(src_pixel).x;
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
|
||||
UNIMPLEMENTED();
|
||||
return 0;
|
||||
case Regs::DepthFormat::D16:
|
||||
return Color::DecodeD16(src_pixel);
|
||||
case Regs::DepthFormat::D24:
|
||||
return Color::DecodeD24(src_pixel);
|
||||
case Regs::DepthFormat::D24S8:
|
||||
return Color::DecodeD24S8(src_pixel).x;
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
|
||||
UNIMPLEMENTED();
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -148,12 +154,15 @@ static u8 GetStencil(int x, int y) {
|
|||
u8* src_pixel = depth_buffer + src_offset;
|
||||
|
||||
switch (framebuffer.depth_format) {
|
||||
case Regs::DepthFormat::D24S8:
|
||||
return Color::DecodeD24S8(src_pixel).y;
|
||||
case Regs::DepthFormat::D24S8:
|
||||
return Color::DecodeD24S8(src_pixel).y;
|
||||
|
||||
default:
|
||||
LOG_WARNING(HW_GPU, "GetStencil called for function which doesn't have a stencil component (format %u)", framebuffer.depth_format);
|
||||
return 0;
|
||||
default:
|
||||
LOG_WARNING(
|
||||
HW_GPU,
|
||||
"GetStencil called for function which doesn't have a stencil component (format %u)",
|
||||
framebuffer.depth_format);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -172,22 +181,22 @@ static void SetDepth(int x, int y, u32 value) {
|
|||
u8* dst_pixel = depth_buffer + dst_offset;
|
||||
|
||||
switch (framebuffer.depth_format) {
|
||||
case Regs::DepthFormat::D16:
|
||||
Color::EncodeD16(value, dst_pixel);
|
||||
break;
|
||||
case Regs::DepthFormat::D16:
|
||||
Color::EncodeD16(value, dst_pixel);
|
||||
break;
|
||||
|
||||
case Regs::DepthFormat::D24:
|
||||
Color::EncodeD24(value, dst_pixel);
|
||||
break;
|
||||
case Regs::DepthFormat::D24:
|
||||
Color::EncodeD24(value, dst_pixel);
|
||||
break;
|
||||
|
||||
case Regs::DepthFormat::D24S8:
|
||||
Color::EncodeD24X8(value, dst_pixel);
|
||||
break;
|
||||
case Regs::DepthFormat::D24S8:
|
||||
Color::EncodeD24X8(value, dst_pixel);
|
||||
break;
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -206,19 +215,19 @@ static void SetStencil(int x, int y, u8 value) {
|
|||
u8* dst_pixel = depth_buffer + dst_offset;
|
||||
|
||||
switch (framebuffer.depth_format) {
|
||||
case Pica::Regs::DepthFormat::D16:
|
||||
case Pica::Regs::DepthFormat::D24:
|
||||
// Nothing to do
|
||||
break;
|
||||
case Pica::Regs::DepthFormat::D16:
|
||||
case Pica::Regs::DepthFormat::D24:
|
||||
// Nothing to do
|
||||
break;
|
||||
|
||||
case Pica::Regs::DepthFormat::D24S8:
|
||||
Color::EncodeX24S8(value, dst_pixel);
|
||||
break;
|
||||
case Pica::Regs::DepthFormat::D24S8:
|
||||
Color::EncodeX24S8(value, dst_pixel);
|
||||
break;
|
||||
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
default:
|
||||
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
|
||||
UNIMPLEMENTED();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -259,18 +268,24 @@ static u8 PerformStencilAction(Regs::StencilAction action, u8 old_stencil, u8 re
|
|||
|
||||
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
|
||||
struct Fix12P4 {
|
||||
Fix12P4() {}
|
||||
Fix12P4(u16 val) : val(val) {}
|
||||
Fix12P4() {
|
||||
}
|
||||
Fix12P4(u16 val) : val(val) {
|
||||
}
|
||||
|
||||
static u16 FracMask() { return 0xF; }
|
||||
static u16 IntMask() { return (u16)~0xF; }
|
||||
static u16 FracMask() {
|
||||
return 0xF;
|
||||
}
|
||||
static u16 IntMask() {
|
||||
return (u16)~0xF;
|
||||
}
|
||||
|
||||
operator u16() const {
|
||||
return val;
|
||||
}
|
||||
|
||||
bool operator < (const Fix12P4& oth) const {
|
||||
return (u16)*this < (u16)oth;
|
||||
bool operator<(const Fix12P4& oth) const {
|
||||
return (u16) * this < (u16)oth;
|
||||
}
|
||||
|
||||
private:
|
||||
|
@ -283,9 +298,8 @@ private:
|
|||
*
|
||||
* @todo define orientation concretely.
|
||||
*/
|
||||
static int SignedArea (const Math::Vec2<Fix12P4>& vtx1,
|
||||
const Math::Vec2<Fix12P4>& vtx2,
|
||||
const Math::Vec2<Fix12P4>& vtx3) {
|
||||
static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2,
|
||||
const Math::Vec2<Fix12P4>& vtx3) {
|
||||
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
|
||||
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
|
||||
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
|
||||
|
@ -298,11 +312,8 @@ MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 24
|
|||
* Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
|
||||
* culling via recursion.
|
||||
*/
|
||||
static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
||||
const Shader::OutputVertex& v1,
|
||||
const Shader::OutputVertex& v2,
|
||||
bool reversed = false)
|
||||
{
|
||||
static void ProcessTriangleInternal(const Shader::OutputVertex& v0, const Shader::OutputVertex& v1,
|
||||
const Shader::OutputVertex& v2, bool reversed = false) {
|
||||
const auto& regs = g_state.regs;
|
||||
MICROPROFILE_SCOPE(GPU_Rasterization);
|
||||
|
||||
|
@ -316,9 +327,9 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
|
||||
};
|
||||
|
||||
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
|
||||
ScreenToRasterizerCoordinates(v1.screenpos),
|
||||
ScreenToRasterizerCoordinates(v2.screenpos) };
|
||||
Math::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos),
|
||||
ScreenToRasterizerCoordinates(v1.screenpos),
|
||||
ScreenToRasterizerCoordinates(v2.screenpos)};
|
||||
|
||||
if (regs.cull_mode == Regs::CullMode::KeepAll) {
|
||||
// Make sure we always end up with a triangle wound counter-clockwise
|
||||
|
@ -344,8 +355,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
||||
|
||||
// Convert the scissor box coordinates to 12.4 fixed point
|
||||
u16 scissor_x1 = (u16)( regs.scissor_test.x1 << 4);
|
||||
u16 scissor_y1 = (u16)( regs.scissor_test.y1 << 4);
|
||||
u16 scissor_x1 = (u16)(regs.scissor_test.x1 << 4);
|
||||
u16 scissor_y1 = (u16)(regs.scissor_test.y1 << 4);
|
||||
// x2,y2 have +1 added to cover the entire sub-pixel area
|
||||
u16 scissor_x2 = (u16)((regs.scissor_test.x2 + 1) << 4);
|
||||
u16 scissor_y2 = (u16)((regs.scissor_test.y2 + 1) << 4);
|
||||
|
@ -369,27 +380,32 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
|
||||
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
|
||||
const Math::Vec2<Fix12P4>& line1,
|
||||
const Math::Vec2<Fix12P4>& line2)
|
||||
{
|
||||
const Math::Vec2<Fix12P4>& line2) {
|
||||
if (line1.y == line2.y) {
|
||||
// just check if vertex is above us => bottom line parallel to x-axis
|
||||
return vtx.y < line1.y;
|
||||
} else {
|
||||
// check if vertex is on our left => right side
|
||||
// TODO: Not sure how likely this is to overflow
|
||||
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
|
||||
return (int)vtx.x < (int)line1.x +
|
||||
((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) /
|
||||
((int)line2.y - (int)line1.y);
|
||||
}
|
||||
};
|
||||
int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
|
||||
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
|
||||
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
|
||||
int bias0 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
|
||||
int bias1 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
|
||||
int bias2 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
|
||||
|
||||
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
|
||||
|
||||
auto textures = regs.GetTextures();
|
||||
auto tev_stages = regs.GetTevStages();
|
||||
|
||||
bool stencil_action_enable = g_state.regs.output_merger.stencil_test.enable && g_state.regs.framebuffer.depth_format == Regs::DepthFormat::D24S8;
|
||||
bool stencil_action_enable = g_state.regs.output_merger.stencil_test.enable &&
|
||||
g_state.regs.framebuffer.depth_format == Regs::DepthFormat::D24S8;
|
||||
const auto stencil_test = g_state.regs.output_merger.stencil_test;
|
||||
|
||||
// Enter rasterization loop, starting at the center of the topleft bounding box corner.
|
||||
|
@ -397,10 +413,10 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
for (u16 y = min_y + 8; y < max_y; y += 0x10) {
|
||||
for (u16 x = min_x + 8; x < max_x; x += 0x10) {
|
||||
|
||||
// Do not process the pixel if it's inside the scissor box and the scissor mode is set to Exclude
|
||||
// Do not process the pixel if it's inside the scissor box and the scissor mode is set
|
||||
// to Exclude
|
||||
if (regs.scissor_test.mode == Regs::ScissorMode::Exclude) {
|
||||
if (x >= scissor_x1 && x < scissor_x2 &&
|
||||
y >= scissor_y1 && y < scissor_y2)
|
||||
if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2)
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -414,15 +430,18 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
if (w0 < 0 || w1 < 0 || w2 < 0)
|
||||
continue;
|
||||
|
||||
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
|
||||
float24::FromFloat32(static_cast<float>(w1)),
|
||||
float24::FromFloat32(static_cast<float>(w2)));
|
||||
float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
|
||||
auto baricentric_coordinates =
|
||||
Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
|
||||
float24::FromFloat32(static_cast<float>(w1)),
|
||||
float24::FromFloat32(static_cast<float>(w2)));
|
||||
float24 interpolated_w_inverse =
|
||||
float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
|
||||
|
||||
// interpolated_z = z / w
|
||||
float interpolated_z_over_w = (v0.screenpos[2].ToFloat32() * w0 +
|
||||
v1.screenpos[2].ToFloat32() * w1 +
|
||||
v2.screenpos[2].ToFloat32() * w2) / wsum;
|
||||
float interpolated_z_over_w =
|
||||
(v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 +
|
||||
v2.screenpos[2].ToFloat32() * w2) /
|
||||
wsum;
|
||||
|
||||
// Not fully accurate. About 3 bits in precision are missing.
|
||||
// Z-Buffer (z / w * scale + offset)
|
||||
|
@ -461,11 +480,18 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
};
|
||||
|
||||
Math::Vec4<u8> primary_color{
|
||||
(u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
|
||||
(u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
|
||||
(u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
|
||||
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
|
||||
};
|
||||
(u8)(
|
||||
GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() *
|
||||
255),
|
||||
(u8)(
|
||||
GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() *
|
||||
255),
|
||||
(u8)(
|
||||
GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() *
|
||||
255),
|
||||
(u8)(
|
||||
GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() *
|
||||
255)};
|
||||
|
||||
Math::Vec2<float24> uv[3];
|
||||
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
|
||||
|
@ -489,7 +515,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
// Only unit 0 respects the texturing type (according to 3DBrew)
|
||||
// TODO: Refactor so cubemaps and shadowmaps can be handled
|
||||
if (i == 0) {
|
||||
switch(texture.config.type) {
|
||||
switch (texture.config.type) {
|
||||
case Regs::TextureConfig::Texture2D:
|
||||
break;
|
||||
case Regs::TextureConfig::Projection2D: {
|
||||
|
@ -506,51 +532,58 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
}
|
||||
}
|
||||
|
||||
int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32();
|
||||
int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32();
|
||||
int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width)))
|
||||
.ToFloat32();
|
||||
int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height)))
|
||||
.ToFloat32();
|
||||
|
||||
|
||||
static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) {
|
||||
static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val,
|
||||
unsigned size) {
|
||||
switch (mode) {
|
||||
case Regs::TextureConfig::ClampToEdge:
|
||||
val = std::max(val, 0);
|
||||
val = std::min(val, (int)size - 1);
|
||||
return val;
|
||||
case Regs::TextureConfig::ClampToEdge:
|
||||
val = std::max(val, 0);
|
||||
val = std::min(val, (int)size - 1);
|
||||
return val;
|
||||
|
||||
case Regs::TextureConfig::ClampToBorder:
|
||||
return val;
|
||||
case Regs::TextureConfig::ClampToBorder:
|
||||
return val;
|
||||
|
||||
case Regs::TextureConfig::Repeat:
|
||||
return (int)((unsigned)val % size);
|
||||
case Regs::TextureConfig::Repeat:
|
||||
return (int)((unsigned)val % size);
|
||||
|
||||
case Regs::TextureConfig::MirroredRepeat:
|
||||
{
|
||||
unsigned int coord = ((unsigned)val % (2 * size));
|
||||
if (coord >= size)
|
||||
coord = 2 * size - 1 - coord;
|
||||
return (int)coord;
|
||||
}
|
||||
case Regs::TextureConfig::MirroredRepeat: {
|
||||
unsigned int coord = ((unsigned)val % (2 * size));
|
||||
if (coord >= size)
|
||||
coord = 2 * size - 1 - coord;
|
||||
return (int)coord;
|
||||
}
|
||||
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x", (int)mode);
|
||||
UNIMPLEMENTED();
|
||||
return 0;
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x", (int)mode);
|
||||
UNIMPLEMENTED();
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
if ((texture.config.wrap_s == Regs::TextureConfig::ClampToBorder && (s < 0 || s >= texture.config.width))
|
||||
|| (texture.config.wrap_t == Regs::TextureConfig::ClampToBorder && (t < 0 || t >= texture.config.height))) {
|
||||
if ((texture.config.wrap_s == Regs::TextureConfig::ClampToBorder &&
|
||||
(s < 0 || s >= texture.config.width)) ||
|
||||
(texture.config.wrap_t == Regs::TextureConfig::ClampToBorder &&
|
||||
(t < 0 || t >= texture.config.height))) {
|
||||
auto border_color = texture.config.border_color;
|
||||
texture_color[i] = { border_color.r, border_color.g, border_color.b, border_color.a };
|
||||
texture_color[i] = {border_color.r, border_color.g, border_color.b,
|
||||
border_color.a};
|
||||
} else {
|
||||
// Textures are laid out from bottom to top, hence we invert the t coordinate.
|
||||
// NOTE: This may not be the right place for the inversion.
|
||||
// TODO: Check if this applies to ETC textures, too.
|
||||
s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
|
||||
t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
|
||||
t = texture.config.height - 1 -
|
||||
GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
|
||||
|
||||
u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
|
||||
auto info = DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format);
|
||||
u8* texture_data =
|
||||
Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
|
||||
auto info =
|
||||
DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format);
|
||||
|
||||
// TODO: Apply the min and mag filters to the texture
|
||||
texture_color[i] = DebugUtils::LookupTexture(texture_data, s, t, info);
|
||||
|
@ -571,10 +604,10 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0};
|
||||
Math::Vec4<u8> next_combiner_buffer = {
|
||||
regs.tev_combiner_buffer_color.r, regs.tev_combiner_buffer_color.g,
|
||||
regs.tev_combiner_buffer_color.b, regs.tev_combiner_buffer_color.a
|
||||
};
|
||||
regs.tev_combiner_buffer_color.b, regs.tev_combiner_buffer_color.a};
|
||||
|
||||
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
|
||||
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
|
||||
++tev_stage_index) {
|
||||
const auto& tev_stage = tev_stages[tev_stage_index];
|
||||
using Source = Regs::TevStageConfig::Source;
|
||||
using ColorModifier = Regs::TevStageConfig::ColorModifier;
|
||||
|
@ -606,7 +639,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
return combiner_buffer;
|
||||
|
||||
case Source::Constant:
|
||||
return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, tev_stage.const_a};
|
||||
return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b,
|
||||
tev_stage.const_a};
|
||||
|
||||
case Source::Previous:
|
||||
return combiner_output;
|
||||
|
@ -618,7 +652,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
}
|
||||
};
|
||||
|
||||
static auto GetColorModifier = [](ColorModifier factor, const Math::Vec4<u8>& values) -> Math::Vec3<u8> {
|
||||
static auto GetColorModifier = [](ColorModifier factor,
|
||||
const Math::Vec4<u8>& values) -> Math::Vec3<u8> {
|
||||
switch (factor) {
|
||||
case ColorModifier::SourceColor:
|
||||
return values.rgb();
|
||||
|
@ -652,7 +687,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
}
|
||||
};
|
||||
|
||||
static auto GetAlphaModifier = [](AlphaModifier factor, const Math::Vec4<u8>& values) -> u8 {
|
||||
static auto GetAlphaModifier = [](AlphaModifier factor,
|
||||
const Math::Vec4<u8>& values) -> u8 {
|
||||
switch (factor) {
|
||||
case AlphaModifier::SourceAlpha:
|
||||
return values.a();
|
||||
|
@ -680,7 +716,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
}
|
||||
};
|
||||
|
||||
static auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
|
||||
static auto ColorCombine = [](Operation op,
|
||||
const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
|
||||
switch (op) {
|
||||
case Operation::Replace:
|
||||
return input[0];
|
||||
|
@ -688,8 +725,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
case Operation::Modulate:
|
||||
return ((input[0] * input[1]) / 255).Cast<u8>();
|
||||
|
||||
case Operation::Add:
|
||||
{
|
||||
case Operation::Add: {
|
||||
auto result = input[0] + input[1];
|
||||
result.r() = std::min(255, result.r());
|
||||
result.g() = std::min(255, result.g());
|
||||
|
@ -697,10 +733,11 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
return result.Cast<u8>();
|
||||
}
|
||||
|
||||
case Operation::AddSigned:
|
||||
{
|
||||
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct
|
||||
auto result = input[0].Cast<int>() + input[1].Cast<int>() - Math::MakeVec<int>(128, 128, 128);
|
||||
case Operation::AddSigned: {
|
||||
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to
|
||||
// (byte) 128 is correct
|
||||
auto result = input[0].Cast<int>() + input[1].Cast<int>() -
|
||||
Math::MakeVec<int>(128, 128, 128);
|
||||
result.r() = MathUtil::Clamp<int>(result.r(), 0, 255);
|
||||
result.g() = MathUtil::Clamp<int>(result.g(), 0, 255);
|
||||
result.b() = MathUtil::Clamp<int>(result.b(), 0, 255);
|
||||
|
@ -708,10 +745,13 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
}
|
||||
|
||||
case Operation::Lerp:
|
||||
return ((input[0] * input[2] + input[1] * (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / 255).Cast<u8>();
|
||||
return ((input[0] * input[2] +
|
||||
input[1] *
|
||||
(Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) /
|
||||
255)
|
||||
.Cast<u8>();
|
||||
|
||||
case Operation::Subtract:
|
||||
{
|
||||
case Operation::Subtract: {
|
||||
auto result = input[0].Cast<int>() - input[1].Cast<int>();
|
||||
result.r() = std::max(0, result.r());
|
||||
result.g() = std::max(0, result.g());
|
||||
|
@ -719,8 +759,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
return result.Cast<u8>();
|
||||
}
|
||||
|
||||
case Operation::MultiplyThenAdd:
|
||||
{
|
||||
case Operation::MultiplyThenAdd: {
|
||||
auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255;
|
||||
result.r() = std::min(255, result.r());
|
||||
result.g() = std::min(255, result.g());
|
||||
|
@ -728,8 +767,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
return result.Cast<u8>();
|
||||
}
|
||||
|
||||
case Operation::AddThenMultiply:
|
||||
{
|
||||
case Operation::AddThenMultiply: {
|
||||
auto result = input[0] + input[1];
|
||||
result.r() = std::min(255, result.r());
|
||||
result.g() = std::min(255, result.g());
|
||||
|
@ -737,17 +775,19 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
result = (result * input[2].Cast<int>()) / 255;
|
||||
return result.Cast<u8>();
|
||||
}
|
||||
case Operation::Dot3_RGB:
|
||||
{
|
||||
case Operation::Dot3_RGB: {
|
||||
// Not fully accurate.
|
||||
// Worst case scenario seems to yield a +/-3 error
|
||||
// Some HW results indicate that the per-component computation can't have a higher precision than 1/256,
|
||||
// while dot3_rgb( (0x80,g0,b0),(0x7F,g1,b1) ) and dot3_rgb( (0x80,g0,b0),(0x80,g1,b1) ) give different results
|
||||
int result = ((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 +
|
||||
((input[0].g() * 2 - 255) * (input[1].g() * 2 - 255) + 128) / 256 +
|
||||
((input[0].b() * 2 - 255) * (input[1].b() * 2 - 255) + 128) / 256;
|
||||
// Some HW results indicate that the per-component computation can't have a
|
||||
// higher precision than 1/256,
|
||||
// while dot3_rgb( (0x80,g0,b0),(0x7F,g1,b1) ) and dot3_rgb(
|
||||
// (0x80,g0,b0),(0x80,g1,b1) ) give different results
|
||||
int result =
|
||||
((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 +
|
||||
((input[0].g() * 2 - 255) * (input[1].g() * 2 - 255) + 128) / 256 +
|
||||
((input[0].b() * 2 - 255) * (input[1].b() * 2 - 255) + 128) / 256;
|
||||
result = std::max(0, std::min(255, result));
|
||||
return { (u8)result, (u8)result, (u8)result };
|
||||
return {(u8)result, (u8)result, (u8)result};
|
||||
}
|
||||
default:
|
||||
LOG_ERROR(HW_GPU, "Unknown color combiner operation %d", (int)op);
|
||||
|
@ -756,7 +796,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
}
|
||||
};
|
||||
|
||||
static auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 {
|
||||
static auto AlphaCombine = [](Operation op, const std::array<u8, 3>& input) -> u8 {
|
||||
switch (op) {
|
||||
case Operation::Replace:
|
||||
return input[0];
|
||||
|
@ -767,9 +807,9 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
case Operation::Add:
|
||||
return std::min(255, input[0] + input[1]);
|
||||
|
||||
case Operation::AddSigned:
|
||||
{
|
||||
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct
|
||||
case Operation::AddSigned: {
|
||||
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to
|
||||
// (byte) 128 is correct
|
||||
auto result = static_cast<int>(input[0]) + static_cast<int>(input[1]) - 128;
|
||||
return static_cast<u8>(MathUtil::Clamp<int>(result, 0, 255));
|
||||
}
|
||||
|
@ -801,32 +841,40 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
Math::Vec3<u8> color_result[3] = {
|
||||
GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
|
||||
GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
|
||||
GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3))
|
||||
};
|
||||
GetColorModifier(tev_stage.color_modifier3,
|
||||
GetSource(tev_stage.color_source3))};
|
||||
auto color_output = ColorCombine(tev_stage.color_op, color_result);
|
||||
|
||||
// alpha combiner
|
||||
std::array<u8,3> alpha_result = {{
|
||||
GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)),
|
||||
GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)),
|
||||
GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3))
|
||||
}};
|
||||
std::array<u8, 3> alpha_result = {
|
||||
{GetAlphaModifier(tev_stage.alpha_modifier1,
|
||||
GetSource(tev_stage.alpha_source1)),
|
||||
GetAlphaModifier(tev_stage.alpha_modifier2,
|
||||
GetSource(tev_stage.alpha_source2)),
|
||||
GetAlphaModifier(tev_stage.alpha_modifier3,
|
||||
GetSource(tev_stage.alpha_source3))}};
|
||||
auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
|
||||
|
||||
combiner_output[0] = std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[1] = std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[2] = std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[3] = std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
|
||||
combiner_output[0] =
|
||||
std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[1] =
|
||||
std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[2] =
|
||||
std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
|
||||
combiner_output[3] =
|
||||
std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
|
||||
|
||||
combiner_buffer = next_combiner_buffer;
|
||||
|
||||
if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_index)) {
|
||||
if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(
|
||||
tev_stage_index)) {
|
||||
next_combiner_buffer.r() = combiner_output.r();
|
||||
next_combiner_buffer.g() = combiner_output.g();
|
||||
next_combiner_buffer.b() = combiner_output.b();
|
||||
}
|
||||
|
||||
if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_index)) {
|
||||
if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(
|
||||
tev_stage_index)) {
|
||||
next_combiner_buffer.a() = combiner_output.a();
|
||||
}
|
||||
}
|
||||
|
@ -897,21 +945,26 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f);
|
||||
float fog_f = fog_index - fog_i;
|
||||
const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)];
|
||||
float fog_factor = (fog_lut_entry.value + fog_lut_entry.difference * fog_f) / 2047.0f; // This is signed fixed point 1.11
|
||||
float fog_factor = (fog_lut_entry.value + fog_lut_entry.difference * fog_f) /
|
||||
2047.0f; // This is signed fixed point 1.11
|
||||
fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f);
|
||||
|
||||
// Blend the fog
|
||||
for (unsigned i = 0; i < 3; i++) {
|
||||
combiner_output[i] = fog_factor * combiner_output[i] + (1.0f - fog_factor) * fog_color[i];
|
||||
combiner_output[i] =
|
||||
fog_factor * combiner_output[i] + (1.0f - fog_factor) * fog_color[i];
|
||||
}
|
||||
}
|
||||
|
||||
u8 old_stencil = 0;
|
||||
|
||||
auto UpdateStencil = [stencil_test, x, y, &old_stencil](Pica::Regs::StencilAction action) {
|
||||
u8 new_stencil = PerformStencilAction(action, old_stencil, stencil_test.reference_value);
|
||||
auto UpdateStencil = [stencil_test, x, y,
|
||||
&old_stencil](Pica::Regs::StencilAction action) {
|
||||
u8 new_stencil =
|
||||
PerformStencilAction(action, old_stencil, stencil_test.reference_value);
|
||||
if (g_state.regs.framebuffer.allow_depth_stencil_write != 0)
|
||||
SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) | (old_stencil & ~stencil_test.write_mask));
|
||||
SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) |
|
||||
(old_stencil & ~stencil_test.write_mask));
|
||||
};
|
||||
|
||||
if (stencil_action_enable) {
|
||||
|
@ -1030,8 +1083,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
static_cast<u8>(output_merger.blend_const.r),
|
||||
static_cast<u8>(output_merger.blend_const.g),
|
||||
static_cast<u8>(output_merger.blend_const.b),
|
||||
static_cast<u8>(output_merger.blend_const.a)
|
||||
};
|
||||
static_cast<u8>(output_merger.blend_const.a)};
|
||||
|
||||
switch (factor) {
|
||||
case Regs::BlendFactor::Zero:
|
||||
|
@ -1091,12 +1143,13 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
return combiner_output[channel];
|
||||
};
|
||||
|
||||
static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor,
|
||||
const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor,
|
||||
Regs::BlendEquation equation) {
|
||||
static auto EvaluateBlendEquation = [](
|
||||
const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor,
|
||||
const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor,
|
||||
Regs::BlendEquation equation) {
|
||||
Math::Vec4<int> result;
|
||||
|
||||
auto src_result = (src * srcfactor).Cast<int>();
|
||||
auto src_result = (src * srcfactor).Cast<int>();
|
||||
auto dst_result = (dest * destfactor).Cast<int>();
|
||||
|
||||
switch (equation) {
|
||||
|
@ -1134,10 +1187,9 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
return Math::Vec4<u8>(MathUtil::Clamp(result.r(), 0, 255),
|
||||
MathUtil::Clamp(result.g(), 0, 255),
|
||||
MathUtil::Clamp(result.b(), 0, 255),
|
||||
MathUtil::Clamp(result.a(), 0, 255));
|
||||
return Math::Vec4<u8>(
|
||||
MathUtil::Clamp(result.r(), 0, 255), MathUtil::Clamp(result.g(), 0, 255),
|
||||
MathUtil::Clamp(result.b(), 0, 255), MathUtil::Clamp(result.a(), 0, 255));
|
||||
};
|
||||
|
||||
auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb),
|
||||
|
@ -1150,8 +1202,11 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
LookupFactor(2, params.factor_dest_rgb),
|
||||
LookupFactor(3, params.factor_dest_a));
|
||||
|
||||
blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb);
|
||||
blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a();
|
||||
blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor,
|
||||
params.blend_equation_rgb);
|
||||
blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest,
|
||||
dstfactor, params.blend_equation_a)
|
||||
.a();
|
||||
} else {
|
||||
static auto LogicOp = [](u8 src, u8 dest, Regs::LogicOp op) -> u8 {
|
||||
switch (op) {
|
||||
|
@ -1205,19 +1260,18 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
}
|
||||
};
|
||||
|
||||
blend_output = Math::MakeVec(
|
||||
LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
|
||||
blend_output =
|
||||
Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
|
||||
LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
|
||||
}
|
||||
|
||||
const Math::Vec4<u8> result = {
|
||||
output_merger.red_enable ? blend_output.r() : dest.r(),
|
||||
output_merger.green_enable ? blend_output.g() : dest.g(),
|
||||
output_merger.blue_enable ? blend_output.b() : dest.b(),
|
||||
output_merger.alpha_enable ? blend_output.a() : dest.a()
|
||||
};
|
||||
const Math::Vec4<u8> result = {output_merger.red_enable ? blend_output.r() : dest.r(),
|
||||
output_merger.green_enable ? blend_output.g() : dest.g(),
|
||||
output_merger.blue_enable ? blend_output.b() : dest.b(),
|
||||
output_merger.alpha_enable ? blend_output.a()
|
||||
: dest.a()};
|
||||
|
||||
if (regs.framebuffer.allow_color_write != 0)
|
||||
DrawPixel(x >> 4, y >> 4, result);
|
||||
|
@ -1225,8 +1279,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
|
|||
}
|
||||
}
|
||||
|
||||
void ProcessTriangle(const Shader::OutputVertex& v0,
|
||||
const Shader::OutputVertex& v1,
|
||||
void ProcessTriangle(const Shader::OutputVertex& v0, const Shader::OutputVertex& v1,
|
||||
const Shader::OutputVertex& v2) {
|
||||
ProcessTriangleInternal(v0, v1, v2);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue