mirror of
https://github.com/google/pebble.git
synced 2025-05-27 13:33:12 +00:00
Import of the watch repository from Pebble
This commit is contained in:
commit
3b92768480
10334 changed files with 2564465 additions and 0 deletions
199
third_party/jerryscript/jerry-libm/log.c
vendored
Normal file
199
third_party/jerryscript/jerry-libm/log.c
vendored
Normal file
|
@ -0,0 +1,199 @@
|
|||
/* Copyright 2016 Samsung Electronics Co., Ltd.
|
||||
* Copyright 2016 University of Szeged
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
* This file is based on work under the following copyright and permission
|
||||
* notice:
|
||||
*
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
*
|
||||
* @(#)e_log.c 1.3 95/01/18
|
||||
*/
|
||||
|
||||
#include "jerry-libm-internal.h"
|
||||
|
||||
/* log(x)
|
||||
* Return the logrithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#define zero 0.0
|
||||
#define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
|
||||
#define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
|
||||
#define two54 1.80143985094819840000e+16 /* 43500000 00000000 */
|
||||
#define Lg1 6.666666666666735130e-01 /* 3FE55555 55555593 */
|
||||
#define Lg2 3.999999999940941908e-01 /* 3FD99999 9997FA04 */
|
||||
#define Lg3 2.857142874366239149e-01 /* 3FD24924 94229359 */
|
||||
#define Lg4 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
|
||||
#define Lg5 1.818357216161805012e-01 /* 3FC74664 96CB03DE */
|
||||
#define Lg6 1.531383769920937332e-01 /* 3FC39A09 D078C69F */
|
||||
#define Lg7 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
|
||||
|
||||
double
|
||||
log (double x)
|
||||
{
|
||||
double hfsq, f, s, z, R, w, t1, t2, dk;
|
||||
int k, hx, i, j;
|
||||
unsigned lx;
|
||||
|
||||
hx = __HI (x); /* high word of x */
|
||||
lx = __LO (x); /* low word of x */
|
||||
|
||||
k = 0;
|
||||
if (hx < 0x00100000) /* x < 2**-1022 */
|
||||
{
|
||||
if (((hx & 0x7fffffff) | lx) == 0) /* log(+-0) = -inf */
|
||||
{
|
||||
return -two54 / zero;
|
||||
}
|
||||
if (hx < 0) /* log(-#) = NaN */
|
||||
{
|
||||
return (x - x) / zero;
|
||||
}
|
||||
k -= 54;
|
||||
x *= two54; /* subnormal number, scale up x */
|
||||
hx = __HI (x); /* high word of x */
|
||||
}
|
||||
if (hx >= 0x7ff00000)
|
||||
{
|
||||
return x + x;
|
||||
}
|
||||
k += (hx >> 20) - 1023;
|
||||
hx &= 0x000fffff;
|
||||
i = (hx + 0x95f64) & 0x100000;
|
||||
__HI (x) = hx | (i ^ 0x3ff00000); /* normalize x or x / 2 */
|
||||
k += (i >> 20);
|
||||
f = x - 1.0;
|
||||
if ((0x000fffff & (2 + hx)) < 3) /* |f| < 2**-20 */
|
||||
{
|
||||
if (f == zero)
|
||||
{
|
||||
if (k == 0)
|
||||
{
|
||||
return zero;
|
||||
}
|
||||
else
|
||||
{
|
||||
dk = (double) k;
|
||||
return dk * ln2_hi + dk * ln2_lo;
|
||||
}
|
||||
}
|
||||
R = f * f * (0.5 - 0.33333333333333333 * f);
|
||||
if (k == 0)
|
||||
{
|
||||
return f - R;
|
||||
}
|
||||
else
|
||||
{
|
||||
dk = (double) k;
|
||||
return dk * ln2_hi - ((R - dk * ln2_lo) - f);
|
||||
}
|
||||
}
|
||||
s = f / (2.0 + f);
|
||||
dk = (double) k;
|
||||
z = s * s;
|
||||
i = hx - 0x6147a;
|
||||
w = z * z;
|
||||
j = 0x6b851 - hx;
|
||||
t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
||||
t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
||||
i |= j;
|
||||
R = t2 + t1;
|
||||
if (i > 0)
|
||||
{
|
||||
hfsq = 0.5 * f * f;
|
||||
if (k == 0)
|
||||
{
|
||||
return f - (hfsq - s * (hfsq + R));
|
||||
}
|
||||
else
|
||||
{
|
||||
return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (k == 0)
|
||||
{
|
||||
return f - s * (f - R);
|
||||
}
|
||||
else
|
||||
{
|
||||
return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
|
||||
}
|
||||
}
|
||||
} /* log */
|
||||
|
||||
#undef zero
|
||||
#undef ln2_hi
|
||||
#undef ln2_lo
|
||||
#undef two54
|
||||
#undef Lg1
|
||||
#undef Lg2
|
||||
#undef Lg3
|
||||
#undef Lg4
|
||||
#undef Lg5
|
||||
#undef Lg6
|
||||
#undef Lg7
|
Loading…
Add table
Add a link
Reference in a new issue