/* * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ice40lp.h" #include "board/board.h" #include "drivers/dbgserial.h" #include "drivers/display/ice40lp_definitions.h" #include "drivers/gpio.h" #include "drivers/periph_config.h" #include "drivers/pmic.h" #include "system/logging.h" #include "system/passert.h" #include "util/delay.h" #include "stm32f7xx.h" #include "misc.h" #include static void prv_spi_init(void) { // Configure the GPIO (SCLK, MOSI - no MISO since the SPI is TX-only) gpio_af_init(&ICE40LP->spi.clk, GPIO_OType_PP, GPIO_Speed_25MHz, GPIO_PuPd_NOPULL); gpio_af_init(&ICE40LP->spi.mosi, GPIO_OType_PP, GPIO_Speed_25MHz, GPIO_PuPd_NOPULL); // Reset the SPI peripheral and enable the clock RCC_APB2PeriphResetCmd(ICE40LP->spi.rcc_bit, ENABLE); RCC_APB2PeriphResetCmd(ICE40LP->spi.rcc_bit, DISABLE); periph_config_enable(ICE40LP->spi.periph, ICE40LP->spi.rcc_bit); // Configure CR1 first: // * TX-only mode (BIDIMODE | BIDIOE) // * software control NSS pin (SSM | SSI) // * master mode (MSTR) // * clock polarity high / 2nd edge (CPOL | CPHA) ICE40LP->spi.periph->CR1 = SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE | SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_MSTR | SPI_CR1_CPOL | SPI_CR1_CPHA; // Configure CR2: // * 8-bit data size (DS[4:0] == 0b0111) // * 1/4 RX threshold (for 8-bit transfers) ICE40LP->spi.periph->CR2 = SPI_CR2_DS_0 | SPI_CR2_DS_1 | SPI_CR2_DS_2 | SPI_CR2_FRXTH; // enable the SPI ICE40LP->spi.periph->CR1 |= SPI_CR1_SPE; } static void prv_spi_write(const uint8_t *data, uint32_t len) { for (uint32_t i = 0; i < len; ++i) { // Wait until we can transmit. while (!(ICE40LP->spi.periph->SR & SPI_SR_TXE)) continue; // Write a byte. STM32F7 needs to access as 8 bits in order to actually do 8 bits. *(volatile uint8_t*)&ICE40LP->spi.periph->DR = data[i]; } // Wait until the TX FIFO is empty plus an extra little bit for the shift-register. while (((ICE40LP->spi.periph->SR & SPI_SR_FTLVL) >> __builtin_ctz(SPI_SR_FTLVL)) > 0) continue; delay_us(10); } bool display_busy(void) { return gpio_input_read(&ICE40LP->busy); } void display_start(void) { // Configure SCS before CRESET and before configuring the SPI so that we don't end up with the // FPGA in the "SPI Master Configuration Interface" on bigboards which don't have NVCM. If we end // up in this mode, the FPGA will drive the clock and put the SPI peripheral in a bad state. gpio_output_init(&ICE40LP->spi.scs, GPIO_OType_PP, GPIO_Speed_25MHz); gpio_output_set(&ICE40LP->spi.scs, false); gpio_input_init(&ICE40LP->cdone); gpio_input_init(&ICE40LP->busy); gpio_output_init(&ICE40LP->creset, GPIO_OType_OD, GPIO_Speed_25MHz); prv_spi_init(); } bool display_program(const uint8_t *fpga_bitstream, uint32_t bitstream_size) { InputConfig creset_input = { .gpio = ICE40LP->creset.gpio, .gpio_pin = ICE40LP->creset.gpio_pin, }; delay_ms(1); gpio_output_set(&ICE40LP->spi.scs, true); // SCS asserted (low) gpio_output_set(&ICE40LP->creset, false); // CRESET LOW delay_ms(1); if (gpio_input_read(&creset_input)) { dbgserial_putstr("CRESET not low during reset"); return false; } gpio_output_set(&ICE40LP->creset, true); // CRESET -> HIGH delay_ms(1); if (gpio_input_read(&ICE40LP->cdone)) { dbgserial_putstr("CDONE not low after reset"); return false; } if (!gpio_input_read(&creset_input)) { dbgserial_putstr("CRESET not high after reset"); return false; } delay_ms(1); // Program the FPGA prv_spi_write(fpga_bitstream, bitstream_size); // Set SCS high so that we don't process any of these clocks as commands. gpio_output_set(&ICE40LP->spi.scs, false); // SCS not asserted (high) // 49+ SCLK cycles to tell FPGA we're done configuration. static const uint8_t spi_zeros[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; prv_spi_write(spi_zeros, sizeof(spi_zeros)); if (!gpio_input_read(&ICE40LP->cdone)) { dbgserial_putstr("CDONE not high after programming"); return false; } return true; } void display_power_enable(void) { // The display requires us to wait 1ms between each power rail coming up. The PMIC // initialization brings up the 3.2V rail (VLCD on the display, LD02 on the PMIC) for us, but // we still need to wait before turning on the subsequent rails. delay_ms(2); if (ICE40LP->use_6v6_rail) { dbgserial_putstr("Enabling 6v6 (Display VDDC)"); set_6V6_power_state(true); delay_ms(2); } dbgserial_putstr("Enabling 4v5 (Display VDDP)"); set_4V5_power_state(true); } void display_power_disable(void) { dbgserial_putstr("Disabling 4v5 (Display VDDP)"); set_4V5_power_state(false); delay_ms(2); if (ICE40LP->use_6v6_rail) { dbgserial_putstr("Disabling 6v6 (Display VDDC)"); set_6V6_power_state(false); delay_ms(2); } } void display_write_cmd(uint8_t cmd, uint8_t *arg, uint32_t arg_len) { gpio_output_set(&ICE40LP->spi.scs, true); // SCS asserted (low) delay_us(100); prv_spi_write(&cmd, sizeof(cmd)); if (arg_len) { prv_spi_write(arg, arg_len); } gpio_output_set(&ICE40LP->spi.scs, false); // SCS not asserted (high) }