Cleanup of PR #24

This commit is contained in:
Menci 2024-08-01 16:56:06 +08:00
parent cc42c66af4
commit 552e61fd50

View file

@ -17,22 +17,15 @@
#define MIN(a, b) ((a > b) ? b : a) #define MIN(a, b) ((a > b) ? b : a)
#endif /* MIN */ #endif /* MIN */
#define SYS_LED_ACTIVE 25 #define LED_PIN 25
#define BUFFER_SIZE 2560 #define BUFFER_SIZE 2560
#define LED_TIMEOUT 10 #define UART0_TX 16
#define UART0_RX 17
#define UART0_TX 0
#define UART0_RX 1
#define UART0_LED_TX 19 // not used for UDPI
#define UART0_LED_RX 18
#define UART1_TX 4 #define UART1_TX 4
#define UART1_RX 5 #define UART1_RX 5
#define UART1_LED_TX 17
#define UART1_LED_RX 16
#define DEF_BIT_RATE 115200 #define DEF_BIT_RATE 115200
#define DEF_STOP_BITS 1 #define DEF_STOP_BITS 1
@ -40,381 +33,334 @@
#define DEF_DATA_BITS 8 #define DEF_DATA_BITS 8
typedef struct { typedef struct {
uart_inst_t * const inst; uart_inst_t *const inst;
uint irq; uint irq;
void *irq_fn; void *irq_fn;
uint8_t tx_pin; uint8_t tx_pin;
uint8_t rx_pin; uint8_t rx_pin;
uint8_t tx_led;
uint8_t rx_led;
} uart_id_t; } uart_id_t;
typedef struct { typedef struct {
cdc_line_coding_t usb_lc; cdc_line_coding_t usb_lc;
cdc_line_coding_t uart_lc; cdc_line_coding_t uart_lc;
mutex_t lc_mtx; mutex_t lc_mtx;
uint8_t uart_buffer[BUFFER_SIZE]; uint8_t uart_buffer[BUFFER_SIZE];
uint32_t uart_pos; uint32_t uart_pos;
mutex_t uart_mtx; mutex_t uart_mtx;
uint8_t usb_buffer[BUFFER_SIZE]; uint8_t usb_buffer[BUFFER_SIZE];
uint32_t usb_pos; uint32_t usb_pos;
mutex_t usb_mtx; mutex_t usb_mtx;
volatile uint8_t countdown_LED_TX;
volatile uint8_t countdown_LED_RX;
critical_section_t spinlock_LED_TX;
critical_section_t spinlock_LED_RX;
} uart_data_t; } uart_data_t;
void uart0_irq_fn(void); void uart0_irq_fn(void);
void uart1_irq_fn(void); void uart1_irq_fn(void);
const uart_id_t UART_ID[CFG_TUD_CDC] = { const uart_id_t UART_ID[CFG_TUD_CDC] = {
{ {
.inst = uart0, .inst = uart0,
.irq = UART0_IRQ, .irq = UART0_IRQ,
.irq_fn = &uart0_irq_fn, .irq_fn = &uart0_irq_fn,
.tx_pin = UART0_TX, .tx_pin = UART0_TX,
.rx_pin = UART0_RX, .rx_pin = UART0_RX,
.tx_led = UART0_LED_TX, }, {
.rx_led = UART0_LED_RX, .inst = uart1,
}, .irq = UART1_IRQ,
{ .irq_fn = &uart1_irq_fn,
.inst = uart1, .tx_pin = UART1_TX,
.irq = UART1_IRQ, .rx_pin = UART1_RX,
.irq_fn = &uart1_irq_fn, }
.tx_pin = UART1_TX,
.rx_pin = UART1_RX,
.tx_led = UART1_LED_TX,
.rx_led = UART1_LED_RX,
}
}; };
uart_data_t UART_DATA[CFG_TUD_CDC]; uart_data_t UART_DATA[CFG_TUD_CDC];
struct repeating_timer stimulate;
volatile bool ready = false; volatile bool ready = false;
void init_led(uint8_t p) { static inline uint databits_usb2uart(uint8_t data_bits)
gpio_init(p); {
gpio_set_dir(p, GPIO_OUT); switch (data_bits) {
gpio_put(p, 0); case 5:
return 5;
case 6:
return 6;
case 7:
return 7;
default:
return 8;
}
} }
static inline uint databits_usb2uart(uint8_t data_bits) { static inline uart_parity_t parity_usb2uart(uint8_t usb_parity)
switch(data_bits) { {
case 5: switch (usb_parity) {
return 5; case 1:
case 6: return UART_PARITY_ODD;
return 6; case 2:
case 7: return UART_PARITY_EVEN;
return 7; default:
default: return UART_PARITY_NONE;
return 8; }
}
} }
static inline uart_parity_t parity_usb2uart(uint8_t usb_parity) { static inline uint stopbits_usb2uart(uint8_t stop_bits)
switch(usb_parity) { {
case 1: switch (stop_bits) {
return UART_PARITY_ODD; case 2:
case 2: return 2;
return UART_PARITY_EVEN; default:
default: return 1;
return UART_PARITY_NONE; }
}
} }
static inline uint stopbits_usb2uart(uint8_t stop_bits) { void update_uart_cfg(uint8_t itf)
switch(stop_bits) { {
case 2: const uart_id_t *ui = &UART_ID[itf];
return 2; uart_data_t *ud = &UART_DATA[itf];
default:
return 1; mutex_enter_blocking(&ud->lc_mtx);
}
if (ud->usb_lc.bit_rate != ud->uart_lc.bit_rate) {
uart_set_baudrate(ui->inst, ud->usb_lc.bit_rate);
ud->uart_lc.bit_rate = ud->usb_lc.bit_rate;
}
if ((ud->usb_lc.stop_bits != ud->uart_lc.stop_bits) ||
(ud->usb_lc.parity != ud->uart_lc.parity) ||
(ud->usb_lc.data_bits != ud->uart_lc.data_bits)) {
uart_set_format(ui->inst,
databits_usb2uart(ud->usb_lc.data_bits),
stopbits_usb2uart(ud->usb_lc.stop_bits),
parity_usb2uart(ud->usb_lc.parity));
ud->uart_lc.data_bits = ud->usb_lc.data_bits;
ud->uart_lc.parity = ud->usb_lc.parity;
ud->uart_lc.stop_bits = ud->usb_lc.stop_bits;
}
mutex_exit(&ud->lc_mtx);
} }
void update_uart_cfg(uint8_t itf) { void usb_read_bytes(uint8_t itf)
const uart_id_t *ui = &UART_ID[itf]; {
uart_data_t *ud = &UART_DATA[itf]; uart_data_t *ud = &UART_DATA[itf];
uint32_t len = tud_cdc_n_available(itf);
mutex_enter_blocking(&ud->lc_mtx); if (len &&
mutex_try_enter(&ud->usb_mtx, NULL)) {
len = MIN(len, BUFFER_SIZE - ud->usb_pos);
if (len) {
uint32_t count;
if(ud->usb_lc.bit_rate != ud->uart_lc.bit_rate) { count = tud_cdc_n_read(itf, &ud->usb_buffer[ud->usb_pos], len);
uart_set_baudrate(ui->inst, ud->usb_lc.bit_rate); ud->usb_pos += count;
ud->uart_lc.bit_rate = ud->usb_lc.bit_rate; }
}
if((ud->usb_lc.stop_bits != ud->uart_lc.stop_bits) || (ud->usb_lc.parity != ud->uart_lc.parity) || (ud->usb_lc.data_bits != ud->uart_lc.data_bits)) { mutex_exit(&ud->usb_mtx);
uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits), stopbits_usb2uart(ud->usb_lc.stop_bits), parity_usb2uart(ud->usb_lc.parity)); }
ud->uart_lc.data_bits = ud->usb_lc.data_bits;
ud->uart_lc.parity = ud->usb_lc.parity;
ud->uart_lc.stop_bits = ud->usb_lc.stop_bits;
}
mutex_exit(&ud->lc_mtx);
} }
void usb_read_bytes(uint8_t itf) { void usb_write_bytes(uint8_t itf)
uart_data_t *ud = &UART_DATA[itf]; {
uint32_t len = tud_cdc_n_available(itf); uart_data_t *ud = &UART_DATA[itf];
if(len && mutex_try_enter(&ud->usb_mtx, NULL)) { if (ud->uart_pos) {
len = MIN(len, BUFFER_SIZE - ud->usb_pos); if (mutex_try_enter(&ud->uart_mtx, NULL)) {
if(len) { uint32_t count = tud_cdc_n_write(itf, ud->uart_buffer, ud->uart_pos);
uint32_t count; // horrible! should use ring buffers!!
count = tud_cdc_n_read(itf, &ud->usb_buffer[ud->usb_pos], len); if (count < ud->uart_pos) {
ud->usb_pos += count; memmove(ud->uart_buffer, &ud->uart_buffer[count], ud->uart_pos - count);
} }
ud->uart_pos -= count;
mutex_exit(&ud->uart_mtx);
mutex_exit(&ud->usb_mtx); if (count)
} tud_cdc_n_write_flush(itf);
}
}
} }
void usb_write_bytes(uint8_t itf) { void tud_cdc_send_break_cb(uint8_t itf, uint16_t duration_ms)
uart_data_t *ud = &UART_DATA[itf]; {
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
if(ud->uart_pos) { // is mutex for tx even needed??
if(mutex_try_enter(&ud->uart_mtx, NULL)) { //mutex_enter_blocking(&ud->lc_mtx);
uint32_t count = tud_cdc_n_write(itf, ud->uart_buffer, ud->uart_pos);
// horrible! should use ring buffers!!
if(count < ud->uart_pos) {
memmove(ud->uart_buffer, &ud->uart_buffer[count], ud->uart_pos - count);
}
ud->uart_pos -= count;
mutex_exit(&ud->uart_mtx);
if(count) if (duration_ms == 0xffff) {
tud_cdc_n_write_flush(itf); uart_set_break(ui->inst, true);
} } else if (duration_ms == 0x0000) {
} uart_set_break(ui->inst, false);
} else {
// should be correct for non-compliant stacks?
uart_set_break(ui->inst, true);
sleep_ms(duration_ms);
uart_set_break(ui->inst, false);
}
//mutex_exit(&ud->lc_mtx);
} }
void tud_cdc_send_break_cb(uint8_t itf, uint16_t duration_ms) { void usb_cdc_process(uint8_t itf)
const uart_id_t *ui = &UART_ID[itf]; {
uart_data_t *ud = &UART_DATA[itf]; uart_data_t *ud = &UART_DATA[itf];
// is mutex for tx even needed?? mutex_enter_blocking(&ud->lc_mtx);
//mutex_enter_blocking(&ud->lc_mtx); tud_cdc_n_get_line_coding(itf, &ud->usb_lc);
mutex_exit(&ud->lc_mtx);
if(duration_ms == 0xffff) { usb_read_bytes(itf);
uart_set_break(ui->inst, true); usb_write_bytes(itf);
} else if(duration_ms == 0x0000) {
uart_set_break(ui->inst, false);
} else {
// should be correct for non-compliant stacks?
uart_set_break(ui->inst, true);
sleep_ms(duration_ms);
uart_set_break(ui->inst, false);
}
//mutex_exit(&ud->lc_mtx);
} }
void usb_cdc_process(uint8_t itf) { void core1_entry(void)
uart_data_t *ud = &UART_DATA[itf]; {
tusb_init();
ready = true;
mutex_enter_blocking(&ud->lc_mtx); while (1) {
tud_cdc_n_get_line_coding(itf, &ud->usb_lc); int itf;
mutex_exit(&ud->lc_mtx); int con = 0;
tud_task();
usb_read_bytes(itf); if (tud_ready()) { // we need to ignore DTR on the CDC side
usb_write_bytes(itf); for (itf = 0; itf < CFG_TUD_CDC; itf++) {
if (tud_cdc_n_connected(itf)) {
con = 1;
usb_cdc_process(itf);
}
}
}
gpio_put(LED_PIN, con);
}
} }
void core1_entry(void) { static inline void uart_read_bytes(uint8_t itf)
tusb_init(); {
ready = true; uart_data_t *ud = &UART_DATA[itf];
const uart_id_t *ui = &UART_ID[itf];
while(1) { if (uart_is_readable(ui->inst)) {
int itf; mutex_enter_blocking(&ud->uart_mtx);
tud_task();
if(tud_ready()) { // we need to ignore DTR on the CDC side if (ud->uart_pos < BUFFER_SIZE) {
gpio_put(SYS_LED_ACTIVE, 1); ud->uart_buffer[ud->uart_pos] = uart_getc(ui->inst);
for(itf = 0; itf < CFG_TUD_CDC; itf++) { ud->uart_pos++;
usb_cdc_process(itf); } else {
} uart_getc(ui->inst); // drop it on the floor
} else { }
gpio_put(SYS_LED_ACTIVE, 0); mutex_exit(&ud->uart_mtx);
} }
}
} }
void stimulate_status(uint8_t itf) { void uart0_irq_fn(void)
const uart_id_t *ui = &UART_ID[itf]; {
uart_data_t *ud = &UART_DATA[itf]; uart_read_bytes(0);
critical_section_enter_blocking(&ud->spinlock_LED_RX);
if(ud->countdown_LED_RX == LED_TIMEOUT) {
gpio_put(ui->rx_led, 1);
}
if(ud->countdown_LED_RX != 0) {
ud->countdown_LED_RX--;
if(ud->countdown_LED_RX == 0) {
gpio_put(ui->rx_led, 0);
}
}
critical_section_exit(&ud->spinlock_LED_RX);
critical_section_enter_blocking(&ud->spinlock_LED_TX);
if(ud->countdown_LED_TX == LED_TIMEOUT) {
gpio_put(ui->tx_led, 1);
}
if(ud->countdown_LED_TX != 0) {
ud->countdown_LED_TX--;
if(ud->countdown_LED_TX == 0) {
gpio_put(ui->tx_led, 0);
}
}
critical_section_exit(&ud->spinlock_LED_TX);
} }
bool update_status(struct repeating_timer *t) { void uart1_irq_fn(void)
for(uint8_t itf = 0; itf < CFG_TUD_CDC; itf++) { {
stimulate_status(itf); uart_read_bytes(1);
}
return true;
} }
static inline void uart_read_bytes(uint8_t itf) { void uart_write_bytes(uint8_t itf)
uart_data_t *ud = &UART_DATA[itf]; {
const uart_id_t *ui = &UART_ID[itf]; uart_data_t *ud = &UART_DATA[itf];
if(uart_is_readable(ui->inst)) { if (ud->usb_pos && mutex_try_enter(&ud->usb_mtx, NULL)) {
const uart_id_t *ui = &UART_ID[itf];
critical_section_enter_blocking(&ud->spinlock_LED_RX); // horrible! should use ring buffers!!
ud->countdown_LED_RX = LED_TIMEOUT; if (uart_is_writable(ui->inst)) { // && count < ud->usb_pos) {
critical_section_exit(&ud->spinlock_LED_RX); uart_putc_raw(ui->inst, ud->usb_buffer[0]);
if (ud->usb_pos > 1) {
mutex_enter_blocking(&ud->uart_mtx); memmove(ud->usb_buffer, &ud->usb_buffer[1], ud->usb_pos - 1);
}
if(ud->uart_pos < BUFFER_SIZE) { ud->usb_pos--;
ud->uart_buffer[ud->uart_pos] = uart_getc(ui->inst); }
ud->uart_pos++; mutex_exit(&ud->usb_mtx);
} else { }
uart_getc(ui->inst); // drop it on the floor
}
mutex_exit(&ud->uart_mtx);
}
} }
void uart_write_bytes(uint8_t itf) { void init_uart_data(uint8_t itf)
uart_data_t *ud = &UART_DATA[itf]; {
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
if(ud->usb_pos && mutex_try_enter(&ud->usb_mtx, NULL)) { /* Pinmux */
const uart_id_t *ui = &UART_ID[itf]; gpio_set_function(ui->tx_pin, GPIO_FUNC_UART);
gpio_set_function(ui->rx_pin, GPIO_FUNC_UART);
gpio_pull_up(ui->rx_pin); // important missed detail, prevents connection glitches
// horrible! should use ring buffers!! /* USB CDC LC */
if(uart_is_writable(ui->inst)) { // && count < ud->usb_pos) { ud->usb_lc.bit_rate = DEF_BIT_RATE;
critical_section_enter_blocking(&ud->spinlock_LED_TX); ud->usb_lc.data_bits = DEF_DATA_BITS;
ud->countdown_LED_TX = LED_TIMEOUT; ud->usb_lc.parity = DEF_PARITY;
critical_section_exit(&ud->spinlock_LED_TX); ud->usb_lc.stop_bits = DEF_STOP_BITS;
uart_putc_raw(ui->inst, ud->usb_buffer[0]);
if(ud->usb_pos > 1) {
memmove(ud->usb_buffer, &ud->usb_buffer[1], ud->usb_pos - 1);
}
ud->usb_pos--;
}
mutex_exit(&ud->usb_mtx);
}
}
void uart0_irq_fn(void) { /* UART LC */
uart_read_bytes(0); ud->uart_lc.bit_rate = DEF_BIT_RATE;
} ud->uart_lc.data_bits = DEF_DATA_BITS;
ud->uart_lc.parity = DEF_PARITY;
ud->uart_lc.stop_bits = DEF_STOP_BITS;
void uart1_irq_fn(void) { /* Buffer */
uart_read_bytes(1); ud->uart_pos = 0;
} ud->usb_pos = 0;
void init_uart_data(uint8_t itf) { /* Mutex */
const uart_id_t *ui = &UART_ID[itf]; mutex_init(&ud->lc_mtx);
uart_data_t *ud = &UART_DATA[itf]; mutex_init(&ud->uart_mtx);
mutex_init(&ud->usb_mtx);
init_led(ui->tx_led); /* UART start */
init_led(ui->rx_led); uart_init(ui->inst, ud->usb_lc.bit_rate);
ud->countdown_LED_TX = 0; uart_set_hw_flow(ui->inst, false, false);
ud->countdown_LED_RX = 0; uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits),
critical_section_init(&ud->spinlock_LED_TX); stopbits_usb2uart(ud->usb_lc.stop_bits),
critical_section_init(&ud->spinlock_LED_RX); parity_usb2uart(ud->usb_lc.parity));
uart_set_fifo_enabled(ui->inst, false);
/* Pinmux */ uart_set_translate_crlf(ui->inst, false);
gpio_set_function(ui->tx_pin, GPIO_FUNC_UART); /* UART RX Interrupt */
gpio_set_function(ui->rx_pin, GPIO_FUNC_UART); irq_set_exclusive_handler(ui->irq, ui->irq_fn);
gpio_pull_up(ui->rx_pin); // important missed detail, prevents connection glitches
/* USB CDC LC */
ud->usb_lc.bit_rate = DEF_BIT_RATE;
ud->usb_lc.data_bits = DEF_DATA_BITS;
ud->usb_lc.parity = DEF_PARITY;
ud->usb_lc.stop_bits = DEF_STOP_BITS;
/* UART LC */
ud->uart_lc.bit_rate = DEF_BIT_RATE;
ud->uart_lc.data_bits = DEF_DATA_BITS;
ud->uart_lc.parity = DEF_PARITY;
ud->uart_lc.stop_bits = DEF_STOP_BITS;
/* Buffer */
ud->uart_pos = 0;
ud->usb_pos = 0;
/* Mutex */
mutex_init(&ud->lc_mtx);
mutex_init(&ud->uart_mtx);
mutex_init(&ud->usb_mtx);
/* UART start */
uart_init(ui->inst, ud->usb_lc.bit_rate);
uart_set_hw_flow(ui->inst, false, false);
uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits),
stopbits_usb2uart(ud->usb_lc.stop_bits),
parity_usb2uart(ud->usb_lc.parity));
uart_set_fifo_enabled(ui->inst, false);
uart_set_translate_crlf(ui->inst, false);
/* UART RX Interrupt */
irq_set_exclusive_handler(ui->irq, ui->irq_fn);
} }
void start_uarts() { void start_uarts() {
uint8_t itf; uint8_t itf;
for(itf = 0; itf < CFG_TUD_CDC; itf++) { for (itf = 0; itf < CFG_TUD_CDC; itf++) {
init_uart_data(itf); init_uart_data(itf);
} }
// init led stimulator // enable ISRs
add_repeating_timer_ms(1, update_status, NULL, &stimulate); for (itf = 0; itf < CFG_TUD_CDC; itf++) {
const uart_id_t *ui = &UART_ID[itf];
// enable ISRs irq_set_enabled(ui->irq, true);
for(itf = 0; itf < CFG_TUD_CDC; itf++) { uart_set_irq_enables(ui->inst, true, false);
const uart_id_t *ui = &UART_ID[itf]; }
irq_set_enabled(ui->irq, true);
uart_set_irq_enables(ui->inst, true, false);
}
} }
int main(void) { int main(void) {
int itf; int itf;
set_sys_clock_khz(125000, false); multicore_reset_core1();
multicore_reset_core1(); usbd_serial_init();
init_led(SYS_LED_ACTIVE); start_uarts();
usbd_serial_init();
start_uarts(); gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
multicore_launch_core1(core1_entry); multicore_launch_core1(core1_entry);
do { do {
sleep_us(1); sleep_us(1);
} while(!ready); } while (!ready);
while(1) { while (1) {
if(tud_ready()) { if (tud_ready()) {
for(itf = 0; itf < CFG_TUD_CDC; itf++) { for (itf = 0; itf < CFG_TUD_CDC; itf++) {
update_uart_cfg(itf); update_uart_cfg(itf);
uart_write_bytes(itf); uart_write_bytes(itf);
} }
} }
} }
return 0; return 0;
} }