mirror of
https://github.com/Noltari/pico-uart-bridge.git
synced 2025-05-14 08:12:20 +00:00
420 lines
12 KiB
C
420 lines
12 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright 2021 Álvaro Fernández Rojas <noltari@gmail.com>
|
|
* Cleanup/modifications Copyright 2023 Andrew J. Kroll <xxxajk at gmail>
|
|
*
|
|
*/
|
|
|
|
#include <hardware/irq.h>
|
|
#include <hardware/structs/sio.h>
|
|
#include <hardware/uart.h>
|
|
#include <pico/multicore.h>
|
|
#include <pico/stdlib.h>
|
|
#include <string.h>
|
|
#include <tusb.h>
|
|
|
|
#if !defined(MIN)
|
|
#define MIN(a, b) ((a > b) ? b : a)
|
|
#endif /* MIN */
|
|
|
|
#define SYS_LED_ACTIVE 25
|
|
|
|
#define BUFFER_SIZE 2560
|
|
|
|
#define LED_TIMEOUT 10
|
|
|
|
#define UART0_TX 0
|
|
#define UART0_RX 1
|
|
#define UART0_LED_TX 19 // not used for UDPI
|
|
#define UART0_LED_RX 18
|
|
|
|
#define UART1_TX 4
|
|
#define UART1_RX 5
|
|
#define UART1_LED_TX 17
|
|
#define UART1_LED_RX 16
|
|
|
|
|
|
#define DEF_BIT_RATE 115200
|
|
#define DEF_STOP_BITS 1
|
|
#define DEF_PARITY 0
|
|
#define DEF_DATA_BITS 8
|
|
|
|
typedef struct {
|
|
uart_inst_t * const inst;
|
|
uint irq;
|
|
void *irq_fn;
|
|
uint8_t tx_pin;
|
|
uint8_t rx_pin;
|
|
uint8_t tx_led;
|
|
uint8_t rx_led;
|
|
} uart_id_t;
|
|
|
|
typedef struct {
|
|
cdc_line_coding_t usb_lc;
|
|
cdc_line_coding_t uart_lc;
|
|
mutex_t lc_mtx;
|
|
uint8_t uart_buffer[BUFFER_SIZE];
|
|
uint32_t uart_pos;
|
|
mutex_t uart_mtx;
|
|
uint8_t usb_buffer[BUFFER_SIZE];
|
|
uint32_t usb_pos;
|
|
mutex_t usb_mtx;
|
|
volatile uint8_t countdown_LED_TX;
|
|
volatile uint8_t countdown_LED_RX;
|
|
critical_section_t spinlock_LED_TX;
|
|
critical_section_t spinlock_LED_RX;
|
|
} uart_data_t;
|
|
|
|
void uart0_irq_fn(void);
|
|
void uart1_irq_fn(void);
|
|
|
|
const uart_id_t UART_ID[CFG_TUD_CDC] = {
|
|
{
|
|
.inst = uart0,
|
|
.irq = UART0_IRQ,
|
|
.irq_fn = &uart0_irq_fn,
|
|
.tx_pin = UART0_TX,
|
|
.rx_pin = UART0_RX,
|
|
.tx_led = UART0_LED_TX,
|
|
.rx_led = UART0_LED_RX,
|
|
},
|
|
{
|
|
.inst = uart1,
|
|
.irq = UART1_IRQ,
|
|
.irq_fn = &uart1_irq_fn,
|
|
.tx_pin = UART1_TX,
|
|
.rx_pin = UART1_RX,
|
|
.tx_led = UART1_LED_TX,
|
|
.rx_led = UART1_LED_RX,
|
|
}
|
|
};
|
|
|
|
uart_data_t UART_DATA[CFG_TUD_CDC];
|
|
struct repeating_timer stimulate;
|
|
volatile bool ready = false;
|
|
|
|
void init_led(uint8_t p) {
|
|
gpio_init(p);
|
|
gpio_set_dir(p, GPIO_OUT);
|
|
gpio_put(p, 0);
|
|
}
|
|
|
|
static inline uint databits_usb2uart(uint8_t data_bits) {
|
|
switch(data_bits) {
|
|
case 5:
|
|
return 5;
|
|
case 6:
|
|
return 6;
|
|
case 7:
|
|
return 7;
|
|
default:
|
|
return 8;
|
|
}
|
|
}
|
|
|
|
static inline uart_parity_t parity_usb2uart(uint8_t usb_parity) {
|
|
switch(usb_parity) {
|
|
case 1:
|
|
return UART_PARITY_ODD;
|
|
case 2:
|
|
return UART_PARITY_EVEN;
|
|
default:
|
|
return UART_PARITY_NONE;
|
|
}
|
|
}
|
|
|
|
static inline uint stopbits_usb2uart(uint8_t stop_bits) {
|
|
switch(stop_bits) {
|
|
case 2:
|
|
return 2;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void update_uart_cfg(uint8_t itf) {
|
|
const uart_id_t *ui = &UART_ID[itf];
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
|
|
mutex_enter_blocking(&ud->lc_mtx);
|
|
|
|
if(ud->usb_lc.bit_rate != ud->uart_lc.bit_rate) {
|
|
uart_set_baudrate(ui->inst, ud->usb_lc.bit_rate);
|
|
ud->uart_lc.bit_rate = ud->usb_lc.bit_rate;
|
|
}
|
|
|
|
if((ud->usb_lc.stop_bits != ud->uart_lc.stop_bits) || (ud->usb_lc.parity != ud->uart_lc.parity) || (ud->usb_lc.data_bits != ud->uart_lc.data_bits)) {
|
|
uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits), stopbits_usb2uart(ud->usb_lc.stop_bits), parity_usb2uart(ud->usb_lc.parity));
|
|
ud->uart_lc.data_bits = ud->usb_lc.data_bits;
|
|
ud->uart_lc.parity = ud->usb_lc.parity;
|
|
ud->uart_lc.stop_bits = ud->usb_lc.stop_bits;
|
|
}
|
|
|
|
mutex_exit(&ud->lc_mtx);
|
|
}
|
|
|
|
void usb_read_bytes(uint8_t itf) {
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
uint32_t len = tud_cdc_n_available(itf);
|
|
|
|
if(len && mutex_try_enter(&ud->usb_mtx, NULL)) {
|
|
len = MIN(len, BUFFER_SIZE - ud->usb_pos);
|
|
if(len) {
|
|
uint32_t count;
|
|
count = tud_cdc_n_read(itf, &ud->usb_buffer[ud->usb_pos], len);
|
|
ud->usb_pos += count;
|
|
}
|
|
|
|
mutex_exit(&ud->usb_mtx);
|
|
}
|
|
}
|
|
|
|
void usb_write_bytes(uint8_t itf) {
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
|
|
if(ud->uart_pos) {
|
|
if(mutex_try_enter(&ud->uart_mtx, NULL)) {
|
|
uint32_t count = tud_cdc_n_write(itf, ud->uart_buffer, ud->uart_pos);
|
|
// horrible! should use ring buffers!!
|
|
if(count < ud->uart_pos) {
|
|
memmove(ud->uart_buffer, &ud->uart_buffer[count], ud->uart_pos - count);
|
|
}
|
|
ud->uart_pos -= count;
|
|
mutex_exit(&ud->uart_mtx);
|
|
|
|
if(count)
|
|
tud_cdc_n_write_flush(itf);
|
|
}
|
|
}
|
|
}
|
|
|
|
void tud_cdc_send_break_cb(uint8_t itf, uint16_t duration_ms) {
|
|
const uart_id_t *ui = &UART_ID[itf];
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
|
|
// is mutex for tx even needed??
|
|
//mutex_enter_blocking(&ud->lc_mtx);
|
|
|
|
if(duration_ms == 0xffff) {
|
|
uart_set_break(ui->inst, true);
|
|
} else if(duration_ms == 0x0000) {
|
|
uart_set_break(ui->inst, false);
|
|
} else {
|
|
// should be correct for non-compliant stacks?
|
|
uart_set_break(ui->inst, true);
|
|
sleep_ms(duration_ms);
|
|
uart_set_break(ui->inst, false);
|
|
}
|
|
//mutex_exit(&ud->lc_mtx);
|
|
}
|
|
|
|
void usb_cdc_process(uint8_t itf) {
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
|
|
mutex_enter_blocking(&ud->lc_mtx);
|
|
tud_cdc_n_get_line_coding(itf, &ud->usb_lc);
|
|
mutex_exit(&ud->lc_mtx);
|
|
|
|
usb_read_bytes(itf);
|
|
usb_write_bytes(itf);
|
|
}
|
|
|
|
void core1_entry(void) {
|
|
tusb_init();
|
|
ready = true;
|
|
|
|
while(1) {
|
|
int itf;
|
|
tud_task();
|
|
|
|
if(tud_ready()) { // we need to ignore DTR on the CDC side
|
|
gpio_put(SYS_LED_ACTIVE, 1);
|
|
for(itf = 0; itf < CFG_TUD_CDC; itf++) {
|
|
usb_cdc_process(itf);
|
|
}
|
|
} else {
|
|
gpio_put(SYS_LED_ACTIVE, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void stimulate_status(uint8_t itf) {
|
|
const uart_id_t *ui = &UART_ID[itf];
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
critical_section_enter_blocking(&ud->spinlock_LED_RX);
|
|
if(ud->countdown_LED_RX == LED_TIMEOUT) {
|
|
gpio_put(ui->rx_led, 1);
|
|
}
|
|
if(ud->countdown_LED_RX != 0) {
|
|
ud->countdown_LED_RX--;
|
|
if(ud->countdown_LED_RX == 0) {
|
|
gpio_put(ui->rx_led, 0);
|
|
}
|
|
}
|
|
critical_section_exit(&ud->spinlock_LED_RX);
|
|
|
|
critical_section_enter_blocking(&ud->spinlock_LED_TX);
|
|
if(ud->countdown_LED_TX == LED_TIMEOUT) {
|
|
gpio_put(ui->tx_led, 1);
|
|
}
|
|
if(ud->countdown_LED_TX != 0) {
|
|
ud->countdown_LED_TX--;
|
|
if(ud->countdown_LED_TX == 0) {
|
|
gpio_put(ui->tx_led, 0);
|
|
}
|
|
}
|
|
critical_section_exit(&ud->spinlock_LED_TX);
|
|
}
|
|
|
|
bool update_status(struct repeating_timer *t) {
|
|
for(uint8_t itf = 0; itf < CFG_TUD_CDC; itf++) {
|
|
stimulate_status(itf);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline void uart_read_bytes(uint8_t itf) {
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
const uart_id_t *ui = &UART_ID[itf];
|
|
|
|
if(uart_is_readable(ui->inst)) {
|
|
|
|
critical_section_enter_blocking(&ud->spinlock_LED_RX);
|
|
ud->countdown_LED_RX = LED_TIMEOUT;
|
|
critical_section_exit(&ud->spinlock_LED_RX);
|
|
|
|
mutex_enter_blocking(&ud->uart_mtx);
|
|
|
|
if(ud->uart_pos < BUFFER_SIZE) {
|
|
ud->uart_buffer[ud->uart_pos] = uart_getc(ui->inst);
|
|
ud->uart_pos++;
|
|
} else {
|
|
uart_getc(ui->inst); // drop it on the floor
|
|
}
|
|
mutex_exit(&ud->uart_mtx);
|
|
}
|
|
}
|
|
|
|
void uart_write_bytes(uint8_t itf) {
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
|
|
if(ud->usb_pos && mutex_try_enter(&ud->usb_mtx, NULL)) {
|
|
const uart_id_t *ui = &UART_ID[itf];
|
|
|
|
// horrible! should use ring buffers!!
|
|
if(uart_is_writable(ui->inst)) { // && count < ud->usb_pos) {
|
|
critical_section_enter_blocking(&ud->spinlock_LED_TX);
|
|
ud->countdown_LED_TX = LED_TIMEOUT;
|
|
critical_section_exit(&ud->spinlock_LED_TX);
|
|
uart_putc_raw(ui->inst, ud->usb_buffer[0]);
|
|
if(ud->usb_pos > 1) {
|
|
memmove(ud->usb_buffer, &ud->usb_buffer[1], ud->usb_pos - 1);
|
|
}
|
|
ud->usb_pos--;
|
|
}
|
|
mutex_exit(&ud->usb_mtx);
|
|
}
|
|
}
|
|
|
|
void uart0_irq_fn(void) {
|
|
uart_read_bytes(0);
|
|
}
|
|
|
|
void uart1_irq_fn(void) {
|
|
uart_read_bytes(1);
|
|
}
|
|
|
|
void init_uart_data(uint8_t itf) {
|
|
const uart_id_t *ui = &UART_ID[itf];
|
|
uart_data_t *ud = &UART_DATA[itf];
|
|
|
|
init_led(ui->tx_led);
|
|
init_led(ui->rx_led);
|
|
ud->countdown_LED_TX = 0;
|
|
ud->countdown_LED_RX = 0;
|
|
critical_section_init(&ud->spinlock_LED_TX);
|
|
critical_section_init(&ud->spinlock_LED_RX);
|
|
|
|
/* Pinmux */
|
|
gpio_set_function(ui->tx_pin, GPIO_FUNC_UART);
|
|
gpio_set_function(ui->rx_pin, GPIO_FUNC_UART);
|
|
gpio_pull_up(ui->rx_pin); // important missed detail, prevents connection glitches
|
|
|
|
/* USB CDC LC */
|
|
ud->usb_lc.bit_rate = DEF_BIT_RATE;
|
|
ud->usb_lc.data_bits = DEF_DATA_BITS;
|
|
ud->usb_lc.parity = DEF_PARITY;
|
|
ud->usb_lc.stop_bits = DEF_STOP_BITS;
|
|
|
|
/* UART LC */
|
|
ud->uart_lc.bit_rate = DEF_BIT_RATE;
|
|
ud->uart_lc.data_bits = DEF_DATA_BITS;
|
|
ud->uart_lc.parity = DEF_PARITY;
|
|
ud->uart_lc.stop_bits = DEF_STOP_BITS;
|
|
|
|
/* Buffer */
|
|
ud->uart_pos = 0;
|
|
ud->usb_pos = 0;
|
|
|
|
/* Mutex */
|
|
mutex_init(&ud->lc_mtx);
|
|
mutex_init(&ud->uart_mtx);
|
|
mutex_init(&ud->usb_mtx);
|
|
|
|
/* UART start */
|
|
uart_init(ui->inst, ud->usb_lc.bit_rate);
|
|
uart_set_hw_flow(ui->inst, false, false);
|
|
uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits),
|
|
stopbits_usb2uart(ud->usb_lc.stop_bits),
|
|
parity_usb2uart(ud->usb_lc.parity));
|
|
uart_set_fifo_enabled(ui->inst, false);
|
|
uart_set_translate_crlf(ui->inst, false);
|
|
/* UART RX Interrupt */
|
|
irq_set_exclusive_handler(ui->irq, ui->irq_fn);
|
|
}
|
|
|
|
void start_uarts() {
|
|
uint8_t itf;
|
|
for(itf = 0; itf < CFG_TUD_CDC; itf++) {
|
|
init_uart_data(itf);
|
|
}
|
|
|
|
// init led stimulator
|
|
add_repeating_timer_ms(1, update_status, NULL, &stimulate);
|
|
|
|
// enable ISRs
|
|
for(itf = 0; itf < CFG_TUD_CDC; itf++) {
|
|
const uart_id_t *ui = &UART_ID[itf];
|
|
irq_set_enabled(ui->irq, true);
|
|
uart_set_irq_enables(ui->inst, true, false);
|
|
}
|
|
}
|
|
|
|
int main(void) {
|
|
int itf;
|
|
|
|
set_sys_clock_khz(125000, false);
|
|
|
|
multicore_reset_core1();
|
|
|
|
init_led(SYS_LED_ACTIVE);
|
|
usbd_serial_init();
|
|
|
|
start_uarts();
|
|
|
|
multicore_launch_core1(core1_entry);
|
|
do {
|
|
sleep_us(1);
|
|
} while(!ready);
|
|
|
|
while(1) {
|
|
if(tud_ready()) {
|
|
for(itf = 0; itf < CFG_TUD_CDC; itf++) {
|
|
update_uart_cfg(itf);
|
|
uart_write_bytes(itf);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|