audio: Implement cubeb audio out backend. (#1895)

* audio: Implement cubeb audio out backend.

* cubeb_audio: Add some additional safety checks.

* cubeb_audio: Add debug logging callback.

* audioout: Refactor backend ports into class.

* pthread: Bump minimum stack size to fix cubeb crash.

* cubeb_audio: Replace output yield loop with condvar.

* common: Rename ring_buffer_base to RingBuffer.
This commit is contained in:
squidbus 2024-12-27 11:04:49 -08:00 committed by GitHub
parent f95803664b
commit 333f35ef25
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
18 changed files with 733 additions and 90 deletions

View file

@ -67,6 +67,7 @@ static int cursorHideTimeout = 5; // 5 seconds (default)
static bool separateupdatefolder = false;
static bool compatibilityData = false;
static bool checkCompatibilityOnStartup = false;
static std::string audioBackend = "cubeb";
// Gui
std::vector<std::filesystem::path> settings_install_dirs = {};
@ -239,6 +240,10 @@ bool getCheckCompatibilityOnStartup() {
return checkCompatibilityOnStartup;
}
std::string getAudioBackend() {
return audioBackend;
}
void setGpuId(s32 selectedGpuId) {
gpuId = selectedGpuId;
}
@ -371,6 +376,10 @@ void setCheckCompatibilityOnStartup(bool use) {
checkCompatibilityOnStartup = use;
}
void setAudioBackend(std::string backend) {
audioBackend = backend;
}
void setMainWindowGeometry(u32 x, u32 y, u32 w, u32 h) {
main_window_geometry_x = x;
main_window_geometry_y = y;
@ -611,6 +620,12 @@ void load(const std::filesystem::path& path) {
vkCrashDiagnostic = toml::find_or<bool>(vk, "crashDiagnostic", false);
}
if (data.contains("Audio")) {
const toml::value& audio = data.at("Audio");
audioBackend = toml::find_or<std::string>(audio, "backend", "cubeb");
}
if (data.contains("Debug")) {
const toml::value& debug = data.at("Debug");
@ -709,6 +724,7 @@ void save(const std::filesystem::path& path) {
data["Vulkan"]["rdocEnable"] = rdocEnable;
data["Vulkan"]["rdocMarkersEnable"] = vkMarkers;
data["Vulkan"]["crashDiagnostic"] = vkCrashDiagnostic;
data["Audio"]["backend"] = audioBackend;
data["Debug"]["DebugDump"] = isDebugDump;
data["Debug"]["CollectShader"] = isShaderDebug;
@ -812,6 +828,7 @@ void setDefaultValues() {
separateupdatefolder = false;
compatibilityData = false;
checkCompatibilityOnStartup = false;
audioBackend = "cubeb";
}
} // namespace Config

View file

@ -24,6 +24,7 @@ bool getEnableDiscordRPC();
bool getSeparateUpdateEnabled();
bool getCompatibilityEnabled();
bool getCheckCompatibilityOnStartup();
std::string getAudioBackend();
std::string getLogFilter();
std::string getLogType();
@ -75,6 +76,7 @@ void setSeparateUpdateEnabled(bool use);
void setGameInstallDirs(const std::vector<std::filesystem::path>& settings_install_dirs_config);
void setCompatibilityEnabled(bool use);
void setCheckCompatibilityOnStartup(bool use);
void setAudioBackend(std::string backend);
void setCursorState(s16 cursorState);
void setCursorHideTimeout(int newcursorHideTimeout);

374
src/common/ringbuffer.h Normal file
View file

@ -0,0 +1,374 @@
// SPDX-FileCopyrightText: Copyright 2016 Mozilla Foundation
// SPDX-License-Identifier: ISC
#pragma once
#include <algorithm>
#include <atomic>
#include <cstdint>
#include <memory>
#include <thread>
#include "common/assert.h"
/**
* Single producer single consumer lock-free and wait-free ring buffer.
*
* This data structure allows producing data from one thread, and consuming it
* on another thread, safely and without explicit synchronization. If used on
* two threads, this data structure uses atomics for thread safety. It is
* possible to disable the use of atomics at compile time and only use this data
* structure on one thread.
*
* The role for the producer and the consumer must be constant, i.e., the
* producer should always be on one thread and the consumer should always be on
* another thread.
*
* Some words about the inner workings of this class:
* - Capacity is fixed. Only one allocation is performed, in the constructor.
* When reading and writing, the return value of the method allows checking if
* the ring buffer is empty or full.
* - We always keep the read index at least one element ahead of the write
* index, so we can distinguish between an empty and a full ring buffer: an
* empty ring buffer is when the write index is at the same position as the
* read index. A full buffer is when the write index is exactly one position
* before the read index.
* - We synchronize updates to the read index after having read the data, and
* the write index after having written the data. This means that the each
* thread can only touch a portion of the buffer that is not touched by the
* other thread.
* - Callers are expected to provide buffers. When writing to the queue,
* elements are copied into the internal storage from the buffer passed in.
* When reading from the queue, the user is expected to provide a buffer.
* Because this is a ring buffer, data might not be contiguous in memory,
* providing an external buffer to copy into is an easy way to have linear
* data for further processing.
*/
template <typename T>
class RingBuffer {
public:
/**
* Constructor for a ring buffer.
*
* This performs an allocation, but is the only allocation that will happen
* for the life time of a `RingBuffer`.
*
* @param capacity The maximum number of element this ring buffer will hold.
*/
RingBuffer(int capacity)
/* One more element to distinguish from empty and full buffer. */
: capacity_(capacity + 1) {
ASSERT(storage_capacity() < std::numeric_limits<int>::max() / 2 &&
"buffer too large for the type of index used.");
ASSERT(capacity_ > 0);
data_.reset(new T[storage_capacity()]);
/* If this queue is using atomics, initializing those members as the last
* action in the constructor acts as a full barrier, and allow capacity() to
* be thread-safe. */
write_index_ = 0;
read_index_ = 0;
}
/**
* Push `count` zero or default constructed elements in the array.
*
* Only safely called on the producer thread.
*
* @param count The number of elements to enqueue.
* @return The number of element enqueued.
*/
int enqueue_default(int count) {
return enqueue(nullptr, count);
}
/**
* @brief Put an element in the queue
*
* Only safely called on the producer thread.
*
* @param element The element to put in the queue.
*
* @return 1 if the element was inserted, 0 otherwise.
*/
int enqueue(T& element) {
return enqueue(&element, 1);
}
/**
* Push `count` elements in the ring buffer.
*
* Only safely called on the producer thread.
*
* @param elements a pointer to a buffer containing at least `count` elements.
* If `elements` is nullptr, zero or default constructed elements are
* enqueued.
* @param count The number of elements to read from `elements`
* @return The number of elements successfully coped from `elements` and
* inserted into the ring buffer.
*/
int enqueue(T* elements, int count) {
#ifndef NDEBUG
assert_correct_thread(producer_id);
#endif
int wr_idx = write_index_.load(std::memory_order_relaxed);
int rd_idx = read_index_.load(std::memory_order_acquire);
if (full_internal(rd_idx, wr_idx)) {
return 0;
}
int to_write = std::min(available_write_internal(rd_idx, wr_idx), count);
/* First part, from the write index to the end of the array. */
int first_part = std::min(storage_capacity() - wr_idx, to_write);
/* Second part, from the beginning of the array */
int second_part = to_write - first_part;
if (elements) {
Copy(data_.get() + wr_idx, elements, first_part);
Copy(data_.get(), elements + first_part, second_part);
} else {
ConstructDefault(data_.get() + wr_idx, first_part);
ConstructDefault(data_.get(), second_part);
}
write_index_.store(increment_index(wr_idx, to_write), std::memory_order_release);
return to_write;
}
/**
* Retrieve at most `count` elements from the ring buffer, and copy them to
* `elements`, if non-null.
*
* Only safely called on the consumer side.
*
* @param elements A pointer to a buffer with space for at least `count`
* elements. If `elements` is `nullptr`, `count` element will be discarded.
* @param count The maximum number of elements to dequeue.
* @return The number of elements written to `elements`.
*/
int dequeue(T* elements, int count) {
#ifndef NDEBUG
assert_correct_thread(consumer_id);
#endif
int rd_idx = read_index_.load(std::memory_order_relaxed);
int wr_idx = write_index_.load(std::memory_order_acquire);
if (empty_internal(rd_idx, wr_idx)) {
return 0;
}
int to_read = std::min(available_read_internal(rd_idx, wr_idx), count);
int first_part = std::min(storage_capacity() - rd_idx, to_read);
int second_part = to_read - first_part;
if (elements) {
Copy(elements, data_.get() + rd_idx, first_part);
Copy(elements + first_part, data_.get(), second_part);
}
read_index_.store(increment_index(rd_idx, to_read), std::memory_order_release);
return to_read;
}
/**
* Get the number of available element for consuming.
*
* Only safely called on the consumer thread.
*
* @return The number of available elements for reading.
*/
int available_read() const {
#ifndef NDEBUG
assert_correct_thread(consumer_id);
#endif
return available_read_internal(read_index_.load(std::memory_order_relaxed),
write_index_.load(std::memory_order_acquire));
}
/**
* Get the number of available elements for consuming.
*
* Only safely called on the producer thread.
*
* @return The number of empty slots in the buffer, available for writing.
*/
int available_write() const {
#ifndef NDEBUG
assert_correct_thread(producer_id);
#endif
return available_write_internal(read_index_.load(std::memory_order_acquire),
write_index_.load(std::memory_order_relaxed));
}
/**
* Get the total capacity, for this ring buffer.
*
* Can be called safely on any thread.
*
* @return The maximum capacity of this ring buffer.
*/
int capacity() const {
return storage_capacity() - 1;
}
/**
* Reset the consumer and producer thread identifier, in case the thread are
* being changed. This has to be externally synchronized. This is no-op when
* asserts are disabled.
*/
void reset_thread_ids() {
#ifndef NDEBUG
consumer_id = producer_id = std::thread::id();
#endif
}
private:
/** Return true if the ring buffer is empty.
*
* @param read_index the read index to consider
* @param write_index the write index to consider
* @return true if the ring buffer is empty, false otherwise.
**/
bool empty_internal(int read_index, int write_index) const {
return write_index == read_index;
}
/** Return true if the ring buffer is full.
*
* This happens if the write index is exactly one element behind the read
* index.
*
* @param read_index the read index to consider
* @param write_index the write index to consider
* @return true if the ring buffer is full, false otherwise.
**/
bool full_internal(int read_index, int write_index) const {
return (write_index + 1) % storage_capacity() == read_index;
}
/**
* Return the size of the storage. It is one more than the number of elements
* that can be stored in the buffer.
*
* @return the number of elements that can be stored in the buffer.
*/
int storage_capacity() const {
return capacity_;
}
/**
* Returns the number of elements available for reading.
*
* @return the number of available elements for reading.
*/
int available_read_internal(int read_index, int write_index) const {
if (write_index >= read_index) {
return write_index - read_index;
} else {
return write_index + storage_capacity() - read_index;
}
}
/**
* Returns the number of empty elements, available for writing.
*
* @return the number of elements that can be written into the array.
*/
int available_write_internal(int read_index, int write_index) const {
/* We substract one element here to always keep at least one sample
* free in the buffer, to distinguish between full and empty array. */
int rv = read_index - write_index - 1;
if (write_index >= read_index) {
rv += storage_capacity();
}
return rv;
}
/**
* Increments an index, wrapping it around the storage.
*
* @param index a reference to the index to increment.
* @param increment the number by which `index` is incremented.
* @return the new index.
*/
int increment_index(int index, int increment) const {
ASSERT(increment >= 0);
return (index + increment) % storage_capacity();
}
/**
* @brief This allows checking that enqueue (resp. dequeue) are always called
* by the right thread.
*
* @param id the id of the thread that has called the calling method first.
*/
#ifndef NDEBUG
static void assert_correct_thread(std::thread::id& id) {
if (id == std::thread::id()) {
id = std::this_thread::get_id();
return;
}
ASSERT(id == std::this_thread::get_id());
}
#endif
/** Similar to memcpy, but accounts for the size of an element. */
template <typename CopyT>
void PodCopy(CopyT* destination, const CopyT* source, size_t count) {
static_assert(std::is_trivial<CopyT>::value, "Requires trivial type");
ASSERT(destination && source);
memcpy(destination, source, count * sizeof(CopyT));
}
/** Similar to a memset to zero, but accounts for the size of an element. */
template <typename ZeroT>
void PodZero(ZeroT* destination, size_t count) {
static_assert(std::is_trivial<ZeroT>::value, "Requires trivial type");
ASSERT(destination);
memset(destination, 0, count * sizeof(ZeroT));
}
template <typename CopyT, typename Trait>
void Copy(CopyT* destination, const CopyT* source, size_t count, Trait) {
for (size_t i = 0; i < count; i++) {
destination[i] = source[i];
}
}
template <typename CopyT>
void Copy(CopyT* destination, const CopyT* source, size_t count, std::true_type) {
PodCopy(destination, source, count);
}
/**
* This allows copying a number of elements from a `source` pointer to a
* `destination` pointer, using `memcpy` if it is safe to do so, or a loop that
* calls the constructors and destructors otherwise.
*/
template <typename CopyT>
void Copy(CopyT* destination, const T* source, size_t count) {
ASSERT(destination && source);
Copy(destination, source, count, typename std::is_trivial<CopyT>::type());
}
template <typename ConstructT, typename Trait>
void ConstructDefault(ConstructT* destination, size_t count, Trait) {
for (size_t i = 0; i < count; i++) {
destination[i] = ConstructT();
}
}
template <typename ConstructT>
void ConstructDefault(ConstructT* destination, size_t count, std::true_type) {
PodZero(destination, count);
}
/**
* This allows zeroing (using memset) or default-constructing a number of
* elements calling the constructors and destructors if necessary.
*/
template <typename ConstructT>
void ConstructDefault(ConstructT* destination, size_t count) {
ASSERT(destination);
ConstructDefault(destination, count, typename std::is_arithmetic<ConstructT>::type());
}
/** Index at which the oldest element is at, in samples. */
std::atomic<int> read_index_;
/** Index at which to write new elements. `write_index` is always at
* least one element ahead of `read_index_`. */
std::atomic<int> write_index_;
/** Maximum number of elements that can be stored in the ring buffer. */
const int capacity_;
/** Data storage */
std::unique_ptr<T[]> data_;
#ifndef NDEBUG
/** The id of the only thread that is allowed to read from the queue. */
mutable std::thread::id consumer_id;
/** The id of the only thread that is allowed to write from the queue. */
mutable std::thread::id producer_id;
#endif
};