Merge branch 'main' into fontlib

This commit is contained in:
georgemoralis 2025-05-16 13:46:21 +03:00 committed by GitHub
commit 9569c29644
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 727 additions and 327 deletions

View file

@ -179,7 +179,7 @@ s32 PS4_SYSV_ABI sceGnmComputeWaitOnAddress(u32* cmdbuf, u32 size, uintptr_t add
auto* wait_reg_mem = reinterpret_cast<PM4CmdWaitRegMem*>(cmdbuf);
wait_reg_mem->header = PM4Type3Header{PM4ItOpcode::WaitRegMem, 5};
wait_reg_mem->raw = (is_mem << 4u) | (cmp_func & 7u);
wait_reg_mem->poll_addr_lo = u32(addr & addr_mask);
wait_reg_mem->poll_addr_lo_raw = u32(addr & addr_mask);
wait_reg_mem->poll_addr_hi = u32(addr >> 32u);
wait_reg_mem->ref = ref;
wait_reg_mem->mask = mask;

View file

@ -12,12 +12,25 @@
namespace Libraries::Kernel {
extern boost::asio::io_context io_context;
extern void KernelSignalRequest();
static constexpr auto HrTimerSpinlockThresholdUs = 1200u;
// Events are uniquely identified by id and filter.
bool EqueueInternal::AddEvent(EqueueEvent& event) {
std::scoped_lock lock{m_mutex};
event.time_added = std::chrono::steady_clock::now();
if (event.event.filter == SceKernelEvent::Filter::Timer ||
event.event.filter == SceKernelEvent::Filter::HrTimer) {
// HrTimer events are offset by the threshold of time at the end that we spinlock for
// greater accuracy.
const auto offset =
event.event.filter == SceKernelEvent::Filter::HrTimer ? HrTimerSpinlockThresholdUs : 0u;
event.timer_interval = std::chrono::microseconds(event.event.data - offset);
}
const auto& it = std::ranges::find(m_events, event);
if (it != m_events.cend()) {
@ -29,6 +42,47 @@ bool EqueueInternal::AddEvent(EqueueEvent& event) {
return true;
}
bool EqueueInternal::ScheduleEvent(u64 id, s16 filter,
void (*callback)(SceKernelEqueue, const SceKernelEvent&)) {
std::scoped_lock lock{m_mutex};
const auto& it = std::ranges::find_if(m_events, [id, filter](auto& ev) {
return ev.event.ident == id && ev.event.filter == filter;
});
if (it == m_events.cend()) {
return false;
}
const auto& event = *it;
ASSERT(event.event.filter == SceKernelEvent::Filter::Timer ||
event.event.filter == SceKernelEvent::Filter::HrTimer);
if (!it->timer) {
it->timer = std::make_unique<boost::asio::steady_timer>(io_context, event.timer_interval);
} else {
// If the timer already exists we are scheduling a reoccurrence after the next period.
// Set the expiration time to the previous occurrence plus the period.
it->timer->expires_at(it->timer->expiry() + event.timer_interval);
}
it->timer->async_wait(
[this, event_data = event.event, callback](const boost::system::error_code& ec) {
if (ec) {
if (ec != boost::system::errc::operation_canceled) {
LOG_ERROR(Kernel_Event, "Timer callback error: {}", ec.message());
} else {
// Timer was cancelled (removed) before it triggered
LOG_DEBUG(Kernel_Event, "Timer cancelled");
}
return;
}
callback(this, event_data);
});
KernelSignalRequest();
return true;
}
bool EqueueInternal::RemoveEvent(u64 id, s16 filter) {
bool has_found = false;
std::scoped_lock lock{m_mutex};
@ -152,18 +206,14 @@ int EqueueInternal::WaitForSmallTimer(SceKernelEvent* ev, int num, u32 micros) {
return count;
}
extern boost::asio::io_context io_context;
extern void KernelSignalRequest();
bool EqueueInternal::EventExists(u64 id, s16 filter) {
std::scoped_lock lock{m_mutex};
static constexpr auto HrTimerSpinlockThresholdUs = 1200u;
const auto& it = std::ranges::find_if(m_events, [id, filter](auto& ev) {
return ev.event.ident == id && ev.event.filter == filter;
});
static void SmallTimerCallback(const boost::system::error_code& error, SceKernelEqueue eq,
SceKernelEvent kevent) {
static EqueueEvent event;
event.event = kevent;
event.event.data = HrTimerSpinlockThresholdUs;
eq->AddSmallTimer(event);
eq->TriggerEvent(kevent.ident, SceKernelEvent::Filter::HrTimer, kevent.udata);
return it != m_events.cend();
}
int PS4_SYSV_ABI sceKernelCreateEqueue(SceKernelEqueue* eq, const char* name) {
@ -243,6 +293,14 @@ int PS4_SYSV_ABI sceKernelWaitEqueue(SceKernelEqueue eq, SceKernelEvent* ev, int
return ORBIS_OK;
}
static void HrTimerCallback(SceKernelEqueue eq, const SceKernelEvent& kevent) {
static EqueueEvent event;
event.event = kevent;
event.event.data = HrTimerSpinlockThresholdUs;
eq->AddSmallTimer(event);
eq->TriggerEvent(kevent.ident, SceKernelEvent::Filter::HrTimer, kevent.udata);
}
s32 PS4_SYSV_ABI sceKernelAddHRTimerEvent(SceKernelEqueue eq, int id, timespec* ts, void* udata) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
@ -273,17 +331,10 @@ s32 PS4_SYSV_ABI sceKernelAddHRTimerEvent(SceKernelEqueue eq, int id, timespec*
return eq->AddSmallTimer(event) ? ORBIS_OK : ORBIS_KERNEL_ERROR_ENOMEM;
}
event.timer = std::make_unique<boost::asio::steady_timer>(
io_context, std::chrono::microseconds(total_us - HrTimerSpinlockThresholdUs));
event.timer->async_wait(std::bind(SmallTimerCallback, std::placeholders::_1, eq, event.event));
if (!eq->AddEvent(event)) {
if (!eq->AddEvent(event) ||
!eq->ScheduleEvent(id, SceKernelEvent::Filter::HrTimer, HrTimerCallback)) {
return ORBIS_KERNEL_ERROR_ENOMEM;
}
KernelSignalRequest();
return ORBIS_OK;
}
@ -300,6 +351,57 @@ int PS4_SYSV_ABI sceKernelDeleteHRTimerEvent(SceKernelEqueue eq, int id) {
}
}
static void TimerCallback(SceKernelEqueue eq, const SceKernelEvent& kevent) {
if (eq->EventExists(kevent.ident, kevent.filter)) {
eq->TriggerEvent(kevent.ident, SceKernelEvent::Filter::Timer, kevent.udata);
if (!(kevent.flags & SceKernelEvent::Flags::OneShot)) {
// Reschedule the event for its next period.
eq->ScheduleEvent(kevent.ident, kevent.filter, TimerCallback);
}
}
}
int PS4_SYSV_ABI sceKernelAddTimerEvent(SceKernelEqueue eq, int id, SceKernelUseconds usec,
void* udata) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
EqueueEvent event{};
event.event.ident = static_cast<u64>(id);
event.event.filter = SceKernelEvent::Filter::Timer;
event.event.flags = SceKernelEvent::Flags::Add;
event.event.fflags = 0;
event.event.data = usec;
event.event.udata = udata;
if (eq->EventExists(event.event.ident, event.event.filter)) {
eq->RemoveEvent(id, SceKernelEvent::Filter::Timer);
LOG_DEBUG(Kernel_Event,
"Timer event already exists, removing it: queue name={}, queue id={}",
eq->GetName(), event.event.ident);
}
LOG_DEBUG(Kernel_Event, "Added timing event: queue name={}, queue id={}, usec={}, pointer={:x}",
eq->GetName(), event.event.ident, usec, reinterpret_cast<uintptr_t>(udata));
if (!eq->AddEvent(event) ||
!eq->ScheduleEvent(id, SceKernelEvent::Filter::Timer, TimerCallback)) {
return ORBIS_KERNEL_ERROR_ENOMEM;
}
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelDeleteTimerEvent(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
return eq->RemoveEvent(id, SceKernelEvent::Filter::Timer) ? ORBIS_OK
: ORBIS_KERNEL_ERROR_ENOENT;
}
int PS4_SYSV_ABI sceKernelAddUserEvent(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
@ -380,6 +482,8 @@ void RegisterEventQueue(Core::Loader::SymbolsResolver* sym) {
LIB_FUNCTION("WDszmSbWuDk", "libkernel", 1, "libkernel", 1, 1, sceKernelAddUserEventEdge);
LIB_FUNCTION("R74tt43xP6k", "libkernel", 1, "libkernel", 1, 1, sceKernelAddHRTimerEvent);
LIB_FUNCTION("J+LF6LwObXU", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteHRTimerEvent);
LIB_FUNCTION("57ZK+ODEXWY", "libkernel", 1, "libkernel", 1, 1, sceKernelAddTimerEvent);
LIB_FUNCTION("YWQFUyXIVdU", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteTimerEvent);
LIB_FUNCTION("F6e0kwo4cnk", "libkernel", 1, "libkernel", 1, 1, sceKernelTriggerUserEvent);
LIB_FUNCTION("LJDwdSNTnDg", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteUserEvent);
LIB_FUNCTION("mJ7aghmgvfc", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventId);

View file

@ -21,6 +21,9 @@ namespace Libraries::Kernel {
class EqueueInternal;
struct EqueueEvent;
using SceKernelUseconds = u32;
using SceKernelEqueue = EqueueInternal*;
struct SceKernelEvent {
enum Filter : s16 {
None = 0,
@ -77,6 +80,7 @@ struct EqueueEvent {
SceKernelEvent event;
void* data = nullptr;
std::chrono::steady_clock::time_point time_added;
std::chrono::microseconds timer_interval;
std::unique_ptr<boost::asio::steady_timer> timer;
void ResetTriggerState() {
@ -133,6 +137,8 @@ public:
}
bool AddEvent(EqueueEvent& event);
bool ScheduleEvent(u64 id, s16 filter,
void (*callback)(SceKernelEqueue, const SceKernelEvent&));
bool RemoveEvent(u64 id, s16 filter);
int WaitForEvents(SceKernelEvent* ev, int num, u32 micros);
bool TriggerEvent(u64 ident, s16 filter, void* trigger_data);
@ -152,6 +158,8 @@ public:
int WaitForSmallTimer(SceKernelEvent* ev, int num, u32 micros);
bool EventExists(u64 id, s16 filter);
private:
std::string m_name;
std::mutex m_mutex;
@ -160,9 +168,6 @@ private:
std::condition_variable m_cond;
};
using SceKernelUseconds = u32;
using SceKernelEqueue = EqueueInternal*;
u64 PS4_SYSV_ABI sceKernelGetEventData(const SceKernelEvent* ev);
void RegisterEventQueue(Core::Loader::SymbolsResolver* sym);

View file

@ -108,6 +108,9 @@ void SetPosixErrno(int e) {
case EACCES:
g_posix_errno = POSIX_EACCES;
break;
case EFAULT:
g_posix_errno = POSIX_EFAULT;
break;
case EINVAL:
g_posix_errno = POSIX_EINVAL;
break;

View file

@ -290,6 +290,12 @@ int PS4_SYSV_ABI sceKernelGetDirectMemoryType(u64 addr, int* directMemoryTypeOut
directMemoryEndOut);
}
int PS4_SYSV_ABI sceKernelIsStack(void* addr, void** start, void** end) {
LOG_DEBUG(Kernel_Vmm, "called, addr = {}", fmt::ptr(addr));
auto* memory = Core::Memory::Instance();
return memory->IsStack(std::bit_cast<VAddr>(addr), start, end);
}
s32 PS4_SYSV_ABI sceKernelBatchMap(OrbisKernelBatchMapEntry* entries, int numEntries,
int* numEntriesOut) {
return sceKernelBatchMap2(entries, numEntries, numEntriesOut,
@ -636,6 +642,7 @@ void RegisterMemory(Core::Loader::SymbolsResolver* sym) {
LIB_FUNCTION("7oxv3PPCumo", "libkernel", 1, "libkernel", 1, 1, sceKernelReserveVirtualRange);
LIB_FUNCTION("BC+OG5m9+bw", "libkernel", 1, "libkernel", 1, 1, sceKernelGetDirectMemoryType);
LIB_FUNCTION("pO96TwzOm5E", "libkernel", 1, "libkernel", 1, 1, sceKernelGetDirectMemorySize);
LIB_FUNCTION("yDBwVAolDgg", "libkernel", 1, "libkernel", 1, 1, sceKernelIsStack);
LIB_FUNCTION("NcaWUxfMNIQ", "libkernel", 1, "libkernel", 1, 1, sceKernelMapNamedDirectMemory);
LIB_FUNCTION("L-Q3LEjIbgA", "libkernel", 1, "libkernel", 1, 1, sceKernelMapDirectMemory);
LIB_FUNCTION("WFcfL2lzido", "libkernel", 1, "libkernel", 1, 1, sceKernelQueryMemoryProtection);

View file

@ -158,6 +158,7 @@ void PS4_SYSV_ABI _sceKernelRtldSetApplicationHeapAPI(void* func[]);
int PS4_SYSV_ABI sceKernelGetDirectMemoryType(u64 addr, int* directMemoryTypeOut,
void** directMemoryStartOut,
void** directMemoryEndOut);
int PS4_SYSV_ABI sceKernelIsStack(void* addr, void** start, void** end);
s32 PS4_SYSV_ABI sceKernelBatchMap(OrbisKernelBatchMapEntry* entries, int numEntries,
int* numEntriesOut);

View file

@ -315,7 +315,7 @@ int PS4_SYSV_ABI sceKernelPollEventFlag(OrbisKernelEventFlag ef, u64 bitPattern,
auto result = ef->Poll(bitPattern, wait, clear, pResultPat);
if (result != ORBIS_OK && result != ORBIS_KERNEL_ERROR_EBUSY) {
LOG_ERROR(Kernel_Event, "returned {}", result);
LOG_DEBUG(Kernel_Event, "returned {:#x}", result);
}
return result;
@ -361,7 +361,7 @@ int PS4_SYSV_ABI sceKernelWaitEventFlag(OrbisKernelEventFlag ef, u64 bitPattern,
u32 result = ef->Wait(bitPattern, wait, clear, pResultPat, pTimeout);
if (result != ORBIS_OK && result != ORBIS_KERNEL_ERROR_ETIMEDOUT) {
LOG_ERROR(Kernel_Event, "returned {:#x}", result);
LOG_DEBUG(Kernel_Event, "returned {:#x}", result);
}
return result;

View file

@ -5,24 +5,23 @@
#include "common/assert.h"
#include "common/native_clock.h"
#include "common/thread.h"
#include "core/libraries/kernel/kernel.h"
#include "core/libraries/kernel/orbis_error.h"
#include "core/libraries/kernel/posix_error.h"
#include "core/libraries/kernel/time.h"
#include "core/libraries/libs.h"
#ifdef _WIN64
#include <pthread_time.h>
#include <windows.h>
#include "common/ntapi.h"
#else
#if __APPLE__
#include <date/tz.h>
#endif
#include <ctime>
#include <sys/resource.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#endif
@ -52,88 +51,116 @@ u64 PS4_SYSV_ABI sceKernelReadTsc() {
return clock->GetUptime();
}
int PS4_SYSV_ABI sceKernelUsleep(u32 microseconds) {
#ifdef _WIN64
const auto start_time = std::chrono::high_resolution_clock::now();
auto total_wait_time = std::chrono::microseconds(microseconds);
static s32 posix_nanosleep_impl(const OrbisKernelTimespec* rqtp, OrbisKernelTimespec* rmtp,
const bool interruptible) {
if (!rqtp || rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= 1'000'000'000) {
SetPosixErrno(EINVAL);
return -1;
}
const auto duration = std::chrono::nanoseconds(rqtp->tv_sec * 1'000'000'000 + rqtp->tv_nsec);
std::chrono::nanoseconds remain;
const auto uninterrupted = Common::AccurateSleep(duration, &remain, interruptible);
if (rmtp) {
rmtp->tv_sec = remain.count() / 1'000'000'000;
rmtp->tv_nsec = remain.count() % 1'000'000'000;
}
if (!uninterrupted) {
SetPosixErrno(EINTR);
return -1;
}
return 0;
}
while (total_wait_time.count() > 0) {
auto wait_time = std::chrono::ceil<std::chrono::milliseconds>(total_wait_time).count();
u64 res = SleepEx(static_cast<u64>(wait_time), true);
if (res == WAIT_IO_COMPLETION) {
auto elapsedTime = std::chrono::high_resolution_clock::now() - start_time;
auto elapsedMicroseconds =
std::chrono::duration_cast<std::chrono::microseconds>(elapsedTime).count();
total_wait_time = std::chrono::microseconds(microseconds - elapsedMicroseconds);
} else {
break;
}
s32 PS4_SYSV_ABI posix_nanosleep(const OrbisKernelTimespec* rqtp, OrbisKernelTimespec* rmtp) {
return posix_nanosleep_impl(rqtp, rmtp, true);
}
s32 PS4_SYSV_ABI sceKernelNanosleep(const OrbisKernelTimespec* rqtp, OrbisKernelTimespec* rmtp) {
if (const auto ret = posix_nanosleep_impl(rqtp, rmtp, false); ret < 0) {
return ErrnoToSceKernelError(*__Error());
}
return ORBIS_OK;
}
s32 PS4_SYSV_ABI posix_usleep(u32 microseconds) {
const OrbisKernelTimespec ts = {
.tv_sec = microseconds / 1'000'000,
.tv_nsec = (microseconds % 1'000'000) * 1'000,
};
return posix_nanosleep(&ts, nullptr);
}
s32 PS4_SYSV_ABI sceKernelUsleep(u32 microseconds) {
const OrbisKernelTimespec ts = {
.tv_sec = microseconds / 1'000'000,
.tv_nsec = (microseconds % 1'000'000) * 1'000,
};
return sceKernelNanosleep(&ts, nullptr);
}
u32 PS4_SYSV_ABI posix_sleep(u32 seconds) {
const OrbisKernelTimespec ts = {
.tv_sec = seconds,
.tv_nsec = 0,
};
OrbisKernelTimespec rm;
if (const auto ret = posix_nanosleep(&ts, &rm); ret < 0) {
return *__Error() == POSIX_EINTR ? rm.tv_sec + (rm.tv_nsec == 0 ? 0 : 1) : seconds;
}
return 0;
}
s32 PS4_SYSV_ABI sceKernelSleep(u32 seconds) {
return sceKernelUsleep(seconds * 1'000'000);
}
s32 PS4_SYSV_ABI posix_clock_gettime(u32 clock_id, OrbisKernelTimespec* ts) {
if (ts == nullptr) {
SetPosixErrno(EFAULT);
return -1;
}
return 0;
#else
timespec start;
timespec remain;
start.tv_sec = microseconds / 1000000;
start.tv_nsec = (microseconds % 1000000) * 1000;
timespec* requested = &start;
int ret = 0;
do {
ret = nanosleep(requested, &remain);
requested = &remain;
} while (ret != 0);
return ret;
#endif
}
if (clock_id == ORBIS_CLOCK_PROCTIME) {
const auto us = sceKernelGetProcessTime();
ts->tv_sec = static_cast<s64>(us / 1'000'000);
ts->tv_nsec = static_cast<s64>((us % 1'000'000) * 1000);
return 0;
}
if (clock_id == ORBIS_CLOCK_EXT_NETWORK || clock_id == ORBIS_CLOCK_EXT_DEBUG_NETWORK ||
clock_id == ORBIS_CLOCK_EXT_AD_NETWORK || clock_id == ORBIS_CLOCK_EXT_RAW_NETWORK) {
LOG_ERROR(Lib_Kernel, "Unsupported clock type {}, using CLOCK_MONOTONIC", clock_id);
clock_id = ORBIS_CLOCK_MONOTONIC;
}
int PS4_SYSV_ABI posix_usleep(u32 microseconds) {
return sceKernelUsleep(microseconds);
}
u32 PS4_SYSV_ABI sceKernelSleep(u32 seconds) {
std::this_thread::sleep_for(std::chrono::seconds(seconds));
return 0;
}
#ifdef _WIN64
#ifndef CLOCK_REALTIME
#define CLOCK_REALTIME 0
#endif
#ifndef CLOCK_MONOTONIC
#define CLOCK_MONOTONIC 1
#endif
#ifndef CLOCK_PROCESS_CPUTIME_ID
#define CLOCK_PROCESS_CPUTIME_ID 2
#endif
#ifndef CLOCK_THREAD_CPUTIME_ID
#define CLOCK_THREAD_CPUTIME_ID 3
#endif
#ifndef CLOCK_REALTIME_COARSE
#define CLOCK_REALTIME_COARSE 5
#endif
#ifndef CLOCK_MONOTONIC_COARSE
#define CLOCK_MONOTONIC_COARSE 6
#endif
#define DELTA_EPOCH_IN_100NS 116444736000000000ULL
static u64 FileTimeTo100Ns(FILETIME& ft) {
return *reinterpret_cast<u64*>(&ft);
}
static s32 clock_gettime(u32 clock_id, struct timespec* ts) {
#ifdef _WIN32
static const auto FileTimeTo100Ns = [](FILETIME& ft) { return *reinterpret_cast<u64*>(&ft); };
switch (clock_id) {
case CLOCK_REALTIME:
case CLOCK_REALTIME_COARSE: {
case ORBIS_CLOCK_REALTIME:
case ORBIS_CLOCK_REALTIME_PRECISE: {
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
const u64 ns = FileTimeTo100Ns(ft) - DELTA_EPOCH_IN_100NS;
GetSystemTimePreciseAsFileTime(&ft);
static constexpr u64 DeltaEpochIn100ns = 116444736000000000ULL;
const u64 ns = FileTimeTo100Ns(ft) - DeltaEpochIn100ns;
ts->tv_sec = ns / 10'000'000;
ts->tv_nsec = (ns % 10'000'000) * 100;
return 0;
}
case CLOCK_MONOTONIC:
case CLOCK_MONOTONIC_COARSE: {
case ORBIS_CLOCK_SECOND:
case ORBIS_CLOCK_REALTIME_FAST: {
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
static constexpr u64 DeltaEpochIn100ns = 116444736000000000ULL;
const u64 ns = FileTimeTo100Ns(ft) - DeltaEpochIn100ns;
ts->tv_sec = ns / 10'000'000;
ts->tv_nsec = (ns % 10'000'000) * 100;
return 0;
}
case ORBIS_CLOCK_UPTIME:
case ORBIS_CLOCK_UPTIME_PRECISE:
case ORBIS_CLOCK_MONOTONIC:
case ORBIS_CLOCK_MONOTONIC_PRECISE:
case ORBIS_CLOCK_UPTIME_FAST:
case ORBIS_CLOCK_MONOTONIC_FAST: {
static LARGE_INTEGER pf = [] {
LARGE_INTEGER res{};
QueryPerformanceFrequency(&pf);
@ -141,43 +168,53 @@ static s32 clock_gettime(u32 clock_id, struct timespec* ts) {
}();
LARGE_INTEGER pc{};
QueryPerformanceCounter(&pc);
if (!QueryPerformanceCounter(&pc)) {
SetPosixErrno(EFAULT);
return -1;
}
ts->tv_sec = pc.QuadPart / pf.QuadPart;
ts->tv_nsec = ((pc.QuadPart % pf.QuadPart) * 1000'000'000) / pf.QuadPart;
return 0;
}
case CLOCK_PROCESS_CPUTIME_ID: {
case ORBIS_CLOCK_THREAD_CPUTIME_ID: {
FILETIME ct, et, kt, ut;
if (!GetProcessTimes(GetCurrentProcess(), &ct, &et, &kt, &ut)) {
return EFAULT;
if (!GetThreadTimes(GetCurrentThread(), &ct, &et, &kt, &ut)) {
SetPosixErrno(EFAULT);
return -1;
}
const u64 ns = FileTimeTo100Ns(ut) + FileTimeTo100Ns(kt);
ts->tv_sec = ns / 10'000'000;
ts->tv_nsec = (ns % 10'000'000) * 100;
return 0;
}
case CLOCK_THREAD_CPUTIME_ID: {
case ORBIS_CLOCK_VIRTUAL: {
FILETIME ct, et, kt, ut;
if (!GetThreadTimes(GetCurrentThread(), &ct, &et, &kt, &ut)) {
return EFAULT;
if (!GetProcessTimes(GetCurrentProcess(), &ct, &et, &kt, &ut)) {
SetPosixErrno(EFAULT);
return -1;
}
const u64 ns = FileTimeTo100Ns(ut) + FileTimeTo100Ns(kt);
const u64 ns = FileTimeTo100Ns(ut);
ts->tv_sec = ns / 10'000'000;
ts->tv_nsec = (ns % 10'000'000) * 100;
return 0;
}
case ORBIS_CLOCK_PROF: {
FILETIME ct, et, kt, ut;
if (!GetProcessTimes(GetCurrentProcess(), &ct, &et, &kt, &ut)) {
SetPosixErrno(EFAULT);
return -1;
}
const u64 ns = FileTimeTo100Ns(kt);
ts->tv_sec = ns / 10'000'000;
ts->tv_nsec = (ns % 10'000'000) * 100;
return 0;
}
default:
return EINVAL;
SetPosixErrno(EFAULT);
return -1;
}
}
#endif
int PS4_SYSV_ABI orbis_clock_gettime(s32 clock_id, struct OrbisKernelTimespec* ts) {
if (ts == nullptr) {
return ORBIS_KERNEL_ERROR_EFAULT;
}
clockid_t pclock_id = CLOCK_MONOTONIC;
#else
clockid_t pclock_id;
switch (clock_id) {
case ORBIS_CLOCK_REALTIME:
case ORBIS_CLOCK_REALTIME_PRECISE:
@ -185,7 +222,7 @@ int PS4_SYSV_ABI orbis_clock_gettime(s32 clock_id, struct OrbisKernelTimespec* t
break;
case ORBIS_CLOCK_SECOND:
case ORBIS_CLOCK_REALTIME_FAST:
#ifndef __APPLE__
#ifdef CLOCK_REALTIME_COARSE
pclock_id = CLOCK_REALTIME_COARSE;
#else
pclock_id = CLOCK_REALTIME;
@ -199,7 +236,7 @@ int PS4_SYSV_ABI orbis_clock_gettime(s32 clock_id, struct OrbisKernelTimespec* t
break;
case ORBIS_CLOCK_UPTIME_FAST:
case ORBIS_CLOCK_MONOTONIC_FAST:
#ifndef __APPLE__
#ifdef CLOCK_MONOTONIC_COARSE
pclock_id = CLOCK_MONOTONIC_COARSE;
#else
pclock_id = CLOCK_MONOTONIC;
@ -208,196 +245,226 @@ int PS4_SYSV_ABI orbis_clock_gettime(s32 clock_id, struct OrbisKernelTimespec* t
case ORBIS_CLOCK_THREAD_CPUTIME_ID:
pclock_id = CLOCK_THREAD_CPUTIME_ID;
break;
case ORBIS_CLOCK_PROCTIME: {
const auto us = sceKernelGetProcessTime();
ts->tv_sec = us / 1'000'000;
ts->tv_nsec = (us % 1'000'000) * 1000;
return 0;
}
case ORBIS_CLOCK_VIRTUAL: {
#ifdef _WIN64
FILETIME ct, et, kt, ut;
if (!GetProcessTimes(GetCurrentProcess(), &ct, &et, &kt, &ut)) {
return EFAULT;
}
const u64 ns = FileTimeTo100Ns(ut);
ts->tv_sec = ns / 10'000'000;
ts->tv_nsec = (ns % 10'000'000) * 100;
#else
struct rusage ru;
rusage ru;
const auto res = getrusage(RUSAGE_SELF, &ru);
if (res < 0) {
return res;
SetPosixErrno(EFAULT);
return -1;
}
ts->tv_sec = ru.ru_utime.tv_sec;
ts->tv_nsec = ru.ru_utime.tv_usec * 1000;
#endif
return 0;
}
case ORBIS_CLOCK_PROF: {
#ifdef _WIN64
FILETIME ct, et, kt, ut;
if (!GetProcessTimes(GetCurrentProcess(), &ct, &et, &kt, &ut)) {
return EFAULT;
}
const u64 ns = FileTimeTo100Ns(kt);
ts->tv_sec = ns / 10'000'000;
ts->tv_nsec = (ns % 10'000'000) * 100;
#else
struct rusage ru;
rusage ru;
const auto res = getrusage(RUSAGE_SELF, &ru);
if (res < 0) {
return res;
SetPosixErrno(EFAULT);
return -1;
}
ts->tv_sec = ru.ru_stime.tv_sec;
ts->tv_nsec = ru.ru_stime.tv_usec * 1000;
#endif
return 0;
}
case ORBIS_CLOCK_EXT_NETWORK:
case ORBIS_CLOCK_EXT_DEBUG_NETWORK:
case ORBIS_CLOCK_EXT_AD_NETWORK:
case ORBIS_CLOCK_EXT_RAW_NETWORK:
pclock_id = CLOCK_MONOTONIC;
LOG_ERROR(Lib_Kernel, "unsupported = {} using CLOCK_MONOTONIC", clock_id);
break;
default:
return EINVAL;
SetPosixErrno(EFAULT);
return -1;
}
timespec t{};
int result = clock_gettime(pclock_id, &t);
const auto result = clock_gettime(pclock_id, &t);
ts->tv_sec = t.tv_sec;
ts->tv_nsec = t.tv_nsec;
return result;
}
int PS4_SYSV_ABI sceKernelClockGettime(s32 clock_id, OrbisKernelTimespec* tp) {
const auto res = orbis_clock_gettime(clock_id, tp);
if (res < 0) {
return ErrnoToSceKernelError(res);
if (result < 0) {
SetPosixErrno(errno);
return -1;
}
return ORBIS_OK;
}
int PS4_SYSV_ABI posix_nanosleep(const OrbisKernelTimespec* rqtp, OrbisKernelTimespec* rmtp) {
const auto* request = reinterpret_cast<const timespec*>(rqtp);
auto* remain = reinterpret_cast<timespec*>(rmtp);
return nanosleep(request, remain);
}
int PS4_SYSV_ABI sceKernelNanosleep(const OrbisKernelTimespec* rqtp, OrbisKernelTimespec* rmtp) {
if (!rqtp || !rmtp) {
return ORBIS_KERNEL_ERROR_EFAULT;
}
if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0) {
return ORBIS_KERNEL_ERROR_EINVAL;
}
return posix_nanosleep(rqtp, rmtp);
}
int PS4_SYSV_ABI sceKernelGettimeofday(OrbisKernelTimeval* tp) {
if (!tp) {
return ORBIS_KERNEL_ERROR_EFAULT;
}
#ifdef _WIN64
FILETIME filetime;
GetSystemTimePreciseAsFileTime(&filetime);
constexpr u64 UNIX_TIME_START = 0x295E9648864000;
constexpr u64 TICKS_PER_SECOND = 1000000;
u64 ticks = filetime.dwHighDateTime;
ticks <<= 32;
ticks |= filetime.dwLowDateTime;
ticks /= 10;
ticks -= UNIX_TIME_START;
tp->tv_sec = ticks / TICKS_PER_SECOND;
tp->tv_usec = ticks % TICKS_PER_SECOND;
#else
timeval tv;
gettimeofday(&tv, nullptr);
tp->tv_sec = tv.tv_sec;
tp->tv_usec = tv.tv_usec;
return 0;
#endif
}
s32 PS4_SYSV_ABI sceKernelClockGettime(const u32 clock_id, OrbisKernelTimespec* ts) {
if (const auto ret = posix_clock_gettime(clock_id, ts); ret < 0) {
return ErrnoToSceKernelError(*__Error());
}
return ORBIS_OK;
}
int PS4_SYSV_ABI gettimeofday(OrbisKernelTimeval* tp, OrbisKernelTimezone* tz) {
// FreeBSD docs mention that the kernel generally does not track these values
// and they are usually returned as zero.
if (tz) {
tz->tz_minuteswest = 0;
tz->tz_dsttime = 0;
}
return sceKernelGettimeofday(tp);
}
s32 PS4_SYSV_ABI sceKernelGettimezone(OrbisKernelTimezone* tz) {
#ifdef _WIN64
ASSERT(tz);
static int tzflag = 0;
if (!tzflag) {
_tzset();
tzflag++;
}
tz->tz_minuteswest = _timezone / 60;
tz->tz_dsttime = _daylight;
#else
struct timezone tzz;
struct timeval tv;
gettimeofday(&tv, &tzz);
tz->tz_dsttime = tzz.tz_dsttime;
tz->tz_minuteswest = tzz.tz_minuteswest;
#endif
return ORBIS_OK;
}
int PS4_SYSV_ABI posix_clock_getres(u32 clock_id, OrbisKernelTimespec* res) {
s32 PS4_SYSV_ABI posix_clock_getres(u32 clock_id, OrbisKernelTimespec* res) {
if (res == nullptr) {
return ORBIS_KERNEL_ERROR_EFAULT;
SetPosixErrno(EFAULT);
return -1;
}
clockid_t pclock_id = CLOCK_REALTIME;
if (clock_id == ORBIS_CLOCK_EXT_NETWORK || clock_id == ORBIS_CLOCK_EXT_DEBUG_NETWORK ||
clock_id == ORBIS_CLOCK_EXT_AD_NETWORK || clock_id == ORBIS_CLOCK_EXT_RAW_NETWORK) {
LOG_ERROR(Lib_Kernel, "Unsupported clock type {}, using CLOCK_MONOTONIC", clock_id);
clock_id = ORBIS_CLOCK_MONOTONIC;
}
#ifdef _WIN32
switch (clock_id) {
case ORBIS_CLOCK_SECOND:
case ORBIS_CLOCK_REALTIME_FAST: {
DWORD timeAdjustment;
DWORD timeIncrement;
BOOL isTimeAdjustmentDisabled;
if (!GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, &isTimeAdjustmentDisabled)) {
SetPosixErrno(EFAULT);
return -1;
}
res->tv_sec = 0;
res->tv_nsec = timeIncrement * 100;
return 0;
}
case ORBIS_CLOCK_REALTIME:
case ORBIS_CLOCK_REALTIME_PRECISE:
case ORBIS_CLOCK_UPTIME:
case ORBIS_CLOCK_UPTIME_PRECISE:
case ORBIS_CLOCK_MONOTONIC:
case ORBIS_CLOCK_MONOTONIC_PRECISE:
case ORBIS_CLOCK_UPTIME_FAST:
case ORBIS_CLOCK_MONOTONIC_FAST: {
LARGE_INTEGER pf;
if (!QueryPerformanceFrequency(&pf)) {
SetPosixErrno(EFAULT);
return -1;
}
res->tv_sec = 0;
res->tv_nsec =
std::max(static_cast<s32>((1000000000 + (pf.QuadPart >> 1)) / pf.QuadPart), 1);
return 0;
}
default:
UNREACHABLE();
}
#else
clockid_t pclock_id;
switch (clock_id) {
case ORBIS_CLOCK_REALTIME:
case ORBIS_CLOCK_REALTIME_PRECISE:
case ORBIS_CLOCK_REALTIME_FAST:
pclock_id = CLOCK_REALTIME;
break;
case ORBIS_CLOCK_SECOND:
case ORBIS_CLOCK_REALTIME_FAST:
#ifdef CLOCK_REALTIME_COARSE
pclock_id = CLOCK_REALTIME_COARSE;
#else
pclock_id = CLOCK_REALTIME;
#endif
break;
case ORBIS_CLOCK_UPTIME:
case ORBIS_CLOCK_UPTIME_PRECISE:
case ORBIS_CLOCK_MONOTONIC:
case ORBIS_CLOCK_MONOTONIC_PRECISE:
case ORBIS_CLOCK_MONOTONIC_FAST:
pclock_id = CLOCK_MONOTONIC;
break;
case ORBIS_CLOCK_UPTIME_FAST:
case ORBIS_CLOCK_MONOTONIC_FAST:
#ifdef CLOCK_MONOTONIC_COARSE
pclock_id = CLOCK_MONOTONIC_COARSE;
#else
pclock_id = CLOCK_MONOTONIC;
#endif
break;
default:
UNREACHABLE();
}
timespec t{};
int result = clock_getres(pclock_id, &t);
const auto result = clock_getres(pclock_id, &t);
res->tv_sec = t.tv_sec;
res->tv_nsec = t.tv_nsec;
if (result == 0) {
return ORBIS_OK;
if (result < 0) {
SetPosixErrno(errno);
return -1;
}
return ORBIS_KERNEL_ERROR_EINVAL;
return 0;
#endif
}
int PS4_SYSV_ABI sceKernelConvertLocaltimeToUtc(time_t param_1, int64_t param_2, time_t* seconds,
OrbisKernelTimezone* timezone, int* dst_seconds) {
s32 PS4_SYSV_ABI sceKernelClockGetres(const u32 clock_id, OrbisKernelTimespec* res) {
if (const auto ret = posix_clock_getres(clock_id, res); ret < 0) {
return ErrnoToSceKernelError(*__Error());
}
return ORBIS_OK;
}
s32 PS4_SYSV_ABI posix_gettimeofday(OrbisKernelTimeval* tp, OrbisKernelTimezone* tz) {
#ifdef _WIN64
if (tp) {
FILETIME filetime;
GetSystemTimePreciseAsFileTime(&filetime);
constexpr u64 UNIX_TIME_START = 0x295E9648864000;
constexpr u64 TICKS_PER_SECOND = 1000000;
u64 ticks = filetime.dwHighDateTime;
ticks <<= 32;
ticks |= filetime.dwLowDateTime;
ticks /= 10;
ticks -= UNIX_TIME_START;
tp->tv_sec = ticks / TICKS_PER_SECOND;
tp->tv_usec = ticks % TICKS_PER_SECOND;
}
if (tz) {
static int tzflag = 0;
if (!tzflag) {
_tzset();
tzflag++;
}
tz->tz_minuteswest = _timezone / 60;
tz->tz_dsttime = _daylight;
}
return 0;
#else
struct timezone tzz;
timeval tv;
const auto ret = gettimeofday(&tv, &tzz);
if (tp) {
tp->tv_sec = tv.tv_sec;
tp->tv_usec = tv.tv_usec;
}
if (tz) {
tz->tz_dsttime = tzz.tz_dsttime;
tz->tz_minuteswest = tzz.tz_minuteswest;
}
if (ret < 0) {
SetPosixErrno(errno);
return -1;
}
return 0;
#endif
}
s32 PS4_SYSV_ABI sceKernelGettimeofday(OrbisKernelTimeval* tp) {
if (const auto ret = posix_gettimeofday(tp, nullptr); ret < 0) {
return ErrnoToSceKernelError(*__Error());
}
return ORBIS_OK;
}
s32 PS4_SYSV_ABI sceKernelGettimezone(OrbisKernelTimezone* tz) {
if (const auto ret = posix_gettimeofday(nullptr, tz); ret < 0) {
return ErrnoToSceKernelError(*__Error());
}
return ORBIS_OK;
}
s32 PS4_SYSV_ABI sceKernelConvertLocaltimeToUtc(time_t param_1, int64_t param_2, time_t* seconds,
OrbisKernelTimezone* timezone, s32* dst_seconds) {
LOG_INFO(Kernel, "called");
if (timezone) {
sceKernelGettimezone(timezone);
param_1 -= (timezone->tz_minuteswest + timezone->tz_dsttime) * 60;
if (seconds)
if (seconds) {
*seconds = param_1;
if (dst_seconds)
}
if (dst_seconds) {
*dst_seconds = timezone->tz_dsttime * 60;
}
} else {
return ORBIS_KERNEL_ERROR_EINVAL;
}
@ -415,7 +482,7 @@ Common::NativeClock* GetClock() {
} // namespace Dev
int PS4_SYSV_ABI sceKernelConvertUtcToLocaltime(time_t time, time_t* local_time,
s32 PS4_SYSV_ABI sceKernelConvertUtcToLocaltime(time_t time, time_t* local_time,
struct OrbisTimesec* st, u64* dst_sec) {
LOG_TRACE(Kernel, "Called");
#ifdef __APPLE__
@ -444,28 +511,35 @@ int PS4_SYSV_ABI sceKernelConvertUtcToLocaltime(time_t time, time_t* local_time,
void RegisterTime(Core::Loader::SymbolsResolver* sym) {
clock = std::make_unique<Common::NativeClock>();
initial_ptc = clock->GetUptime();
// POSIX
LIB_FUNCTION("yS8U2TGCe1A", "libkernel", 1, "libkernel", 1, 1, posix_nanosleep);
LIB_FUNCTION("yS8U2TGCe1A", "libScePosix", 1, "libkernel", 1, 1, posix_nanosleep);
LIB_FUNCTION("QcteRwbsnV0", "libkernel", 1, "libkernel", 1, 1, posix_usleep);
LIB_FUNCTION("QcteRwbsnV0", "libScePosix", 1, "libkernel", 1, 1, posix_usleep);
LIB_FUNCTION("0wu33hunNdE", "libkernel", 1, "libkernel", 1, 1, posix_sleep);
LIB_FUNCTION("0wu33hunNdE", "libScePosix", 1, "libkernel", 1, 1, posix_sleep);
LIB_FUNCTION("lLMT9vJAck0", "libkernel", 1, "libkernel", 1, 1, posix_clock_gettime);
LIB_FUNCTION("lLMT9vJAck0", "libScePosix", 1, "libkernel", 1, 1, posix_clock_gettime);
LIB_FUNCTION("smIj7eqzZE8", "libkernel", 1, "libkernel", 1, 1, posix_clock_getres);
LIB_FUNCTION("smIj7eqzZE8", "libScePosix", 1, "libkernel", 1, 1, posix_clock_getres);
LIB_FUNCTION("n88vx3C5nW8", "libkernel", 1, "libkernel", 1, 1, posix_gettimeofday);
LIB_FUNCTION("n88vx3C5nW8", "libScePosix", 1, "libkernel", 1, 1, posix_gettimeofday);
// Orbis
LIB_FUNCTION("4J2sUJmuHZQ", "libkernel", 1, "libkernel", 1, 1, sceKernelGetProcessTime);
LIB_FUNCTION("fgxnMeTNUtY", "libkernel", 1, "libkernel", 1, 1, sceKernelGetProcessTimeCounter);
LIB_FUNCTION("BNowx2l588E", "libkernel", 1, "libkernel", 1, 1,
sceKernelGetProcessTimeCounterFrequency);
LIB_FUNCTION("-2IRUCO--PM", "libkernel", 1, "libkernel", 1, 1, sceKernelReadTsc);
LIB_FUNCTION("1j3S3n-tTW4", "libkernel", 1, "libkernel", 1, 1, sceKernelGetTscFrequency);
LIB_FUNCTION("ejekcaNQNq0", "libkernel", 1, "libkernel", 1, 1, sceKernelGettimeofday);
LIB_FUNCTION("n88vx3C5nW8", "libkernel", 1, "libkernel", 1, 1, gettimeofday);
LIB_FUNCTION("n88vx3C5nW8", "libScePosix", 1, "libkernel", 1, 1, gettimeofday);
LIB_FUNCTION("QvsZxomvUHs", "libkernel", 1, "libkernel", 1, 1, sceKernelNanosleep);
LIB_FUNCTION("1jfXLRVzisc", "libkernel", 1, "libkernel", 1, 1, sceKernelUsleep);
LIB_FUNCTION("QcteRwbsnV0", "libkernel", 1, "libkernel", 1, 1, posix_usleep);
LIB_FUNCTION("QcteRwbsnV0", "libScePosix", 1, "libkernel", 1, 1, posix_usleep);
LIB_FUNCTION("-ZR+hG7aDHw", "libkernel", 1, "libkernel", 1, 1, sceKernelSleep);
LIB_FUNCTION("0wu33hunNdE", "libScePosix", 1, "libkernel", 1, 1, sceKernelSleep);
LIB_FUNCTION("yS8U2TGCe1A", "libkernel", 1, "libkernel", 1, 1, posix_nanosleep);
LIB_FUNCTION("yS8U2TGCe1A", "libScePosix", 1, "libkernel", 1, 1, posix_nanosleep);
LIB_FUNCTION("QBi7HCK03hw", "libkernel", 1, "libkernel", 1, 1, sceKernelClockGettime);
LIB_FUNCTION("wRYVA5Zolso", "libkernel", 1, "libkernel", 1, 1, sceKernelClockGetres);
LIB_FUNCTION("ejekcaNQNq0", "libkernel", 1, "libkernel", 1, 1, sceKernelGettimeofday);
LIB_FUNCTION("kOcnerypnQA", "libkernel", 1, "libkernel", 1, 1, sceKernelGettimezone);
LIB_FUNCTION("lLMT9vJAck0", "libkernel", 1, "libkernel", 1, 1, orbis_clock_gettime);
LIB_FUNCTION("lLMT9vJAck0", "libScePosix", 1, "libkernel", 1, 1, orbis_clock_gettime);
LIB_FUNCTION("smIj7eqzZE8", "libScePosix", 1, "libkernel", 1, 1, posix_clock_getres);
LIB_FUNCTION("0NTHN1NKONI", "libkernel", 1, "libkernel", 1, 1, sceKernelConvertLocaltimeToUtc);
LIB_FUNCTION("-o5uEDpN+oY", "libkernel", 1, "libkernel", 1, 1, sceKernelConvertUtcToLocaltime);
}

View file

@ -75,14 +75,14 @@ u64 PS4_SYSV_ABI sceKernelGetProcessTime();
u64 PS4_SYSV_ABI sceKernelGetProcessTimeCounter();
u64 PS4_SYSV_ABI sceKernelGetProcessTimeCounterFrequency();
u64 PS4_SYSV_ABI sceKernelReadTsc();
int PS4_SYSV_ABI sceKernelClockGettime(s32 clock_id, OrbisKernelTimespec* tp);
s32 PS4_SYSV_ABI sceKernelClockGettime(u32 clock_id, OrbisKernelTimespec* tp);
s32 PS4_SYSV_ABI sceKernelGettimezone(OrbisKernelTimezone* tz);
int PS4_SYSV_ABI sceKernelConvertLocaltimeToUtc(time_t param_1, int64_t param_2, time_t* seconds,
OrbisKernelTimezone* timezone, int* dst_seconds);
s32 PS4_SYSV_ABI sceKernelConvertLocaltimeToUtc(time_t param_1, int64_t param_2, time_t* seconds,
OrbisKernelTimezone* timezone, s32* dst_seconds);
int PS4_SYSV_ABI sceKernelConvertUtcToLocaltime(time_t time, time_t* local_time, OrbisTimesec* st,
s32 PS4_SYSV_ABI sceKernelConvertUtcToLocaltime(time_t time, time_t* local_time, OrbisTimesec* st,
u64* dst_sec);
int PS4_SYSV_ABI sceKernelUsleep(u32 microseconds);
s32 PS4_SYSV_ABI sceKernelUsleep(u32 microseconds);
void RegisterTime(Core::Loader::SymbolsResolver* sym);

View file

@ -380,8 +380,7 @@ s32 PS4_SYSV_ABI sceNgs2GeomApply(const OrbisNgs2GeomListenerWork* listener,
s32 PS4_SYSV_ABI sceNgs2PanInit(OrbisNgs2PanWork* work, const float* aSpeakerAngle, float unitAngle,
u32 numSpeakers) {
LOG_ERROR(Lib_Ngs2, "aSpeakerAngle = {}, unitAngle = {}, numSpeakers = {}", *aSpeakerAngle,
unitAngle, numSpeakers);
LOG_ERROR(Lib_Ngs2, "unitAngle = {}, numSpeakers = {}", unitAngle, numSpeakers);
return ORBIS_OK;
}