common: Rework timekeeping with native RDTSC and port to linux

This commit is contained in:
GPUCode 2024-02-15 00:52:57 +02:00
parent acfa56f6bc
commit fe43558779
37 changed files with 818 additions and 279 deletions

View file

@ -109,7 +109,11 @@ int Init(bool use_stdout) {
if (use_stdout) {
sinks.push_back(std::make_shared<spdlog::sinks::stdout_color_sink_mt>());
}
#ifdef _WIN64
sinks.push_back(std::make_shared<spdlog::sinks::basic_file_sink_mt>(L"shadps4.txt", true));
#else
sinks.push_back(std::make_shared<spdlog::sinks::basic_file_sink_mt>("shadps4.txt", true));
#endif
spdlog::set_default_logger(std::make_shared<spdlog::logger>("shadps4 logger", begin(sinks), end(sinks)));
auto f = std::make_unique<spdlog::pattern_formatter>("%^|%L|: %v%$", spdlog::pattern_time_type::local, std::string("")); // disable eol
spdlog::set_formatter(std::move(f));

View file

@ -0,0 +1,43 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/uint128.h"
#include "common/native_clock.h"
#include "common/rdtsc.h"
#ifdef _WIN64
#include <pthread_time.h>
#else
#include <time.h>
#endif
namespace Common {
NativeClock::NativeClock()
: rdtsc_frequency{EstimateRDTSCFrequency()}, ns_rdtsc_factor{GetFixedPoint64Factor(std::nano::den,
rdtsc_frequency)},
us_rdtsc_factor{GetFixedPoint64Factor(std::micro::den, rdtsc_frequency)},
ms_rdtsc_factor{GetFixedPoint64Factor(std::milli::den, rdtsc_frequency)} {}
u64 NativeClock::GetTimeNS() const {
return MultiplyHigh(GetUptime(), ns_rdtsc_factor);
}
u64 NativeClock::GetTimeUS() const {
return MultiplyHigh(GetUptime(), us_rdtsc_factor);
}
u64 NativeClock::GetTimeMS() const {
return MultiplyHigh(GetUptime(), ms_rdtsc_factor);
}
u64 NativeClock::GetUptime() const {
return FencedRDTSC();
}
u64 NativeClock::GetProcessTimeUS() const {
timespec ret;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ret);
return ret.tv_nsec / 1000 + ret.tv_sec * 1000000;
}
} // namespace Common::X64

32
src/common/native_clock.h Normal file
View file

@ -0,0 +1,32 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <chrono>
#include "common/types.h"
namespace Common {
class NativeClock final {
public:
explicit NativeClock();
u64 GetTscFrequency() const {
return rdtsc_frequency;
}
u64 GetTimeNS() const;
u64 GetTimeUS() const;
u64 GetTimeMS() const;
u64 GetUptime() const;
u64 GetProcessTimeUS() const;
private:
u64 rdtsc_frequency;
u64 ns_rdtsc_factor;
u64 us_rdtsc_factor;
u64 ms_rdtsc_factor;
};
} // namespace Common

60
src/common/rdtsc.cpp Normal file
View file

@ -0,0 +1,60 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <thread>
#include "common/rdtsc.h"
#include "common/uint128.h"
#ifdef _WIN64
#include <windows.h>
#endif
namespace Common {
static constexpr size_t SecondToNanoseconds = 1000000000ULL;
template <u64 Nearest>
static u64 RoundToNearest(u64 value) {
const auto mod = value % Nearest;
return mod >= (Nearest / 2) ? (value - mod + Nearest) : (value - mod);
}
static u64 GetTimeNs() {
#ifdef _WIN64
// GetSystemTimePreciseAsFileTime returns the file time in 100ns units.
static constexpr u64 Multiplier = 100;
// Convert Windows epoch to Unix epoch.
static constexpr u64 WindowsEpochToUnixEpoch = 0x19DB1DED53E8000LL;
FILETIME filetime;
GetSystemTimePreciseAsFileTime(&filetime);
return Multiplier * ((static_cast<u64>(filetime.dwHighDateTime) << 32) +
static_cast<u64>(filetime.dwLowDateTime) - WindowsEpochToUnixEpoch);
#elif defined(__APPLE__)
return clock_gettime_nsec_np(CLOCK_REALTIME);
#else
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return ts.tv_sec * SecondToNanoseconds + ts.tv_nsec;
#endif
}
u64 EstimateRDTSCFrequency() {
// Discard the first result measuring the rdtsc.
FencedRDTSC();
std::this_thread::sleep_for(std::chrono::milliseconds{1});
FencedRDTSC();
// Get the current time.
const auto start_time = GetTimeNs();
const u64 tsc_start = FencedRDTSC();
// Wait for 100 milliseconds.
std::this_thread::sleep_for(std::chrono::milliseconds{100});
const auto end_time = GetTimeNs();
const u64 tsc_end = FencedRDTSC();
// Calculate differences.
const u64 tsc_diff = tsc_end - tsc_start;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, end_time - start_time);
return RoundToNearest<100'000>(tsc_freq);
}
} // namespace Common

37
src/common/rdtsc.h Normal file
View file

@ -0,0 +1,37 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include "common/types.h"
namespace Common {
#ifdef _MSC_VER
__forceinline static u64 FencedRDTSC() {
_mm_lfence();
_ReadWriteBarrier();
const u64 result = __rdtsc();
_mm_lfence();
_ReadWriteBarrier();
return result;
}
#else
static inline u64 FencedRDTSC() {
u64 eax;
u64 edx;
asm volatile("lfence\n\t"
"rdtsc\n\t"
"lfence\n\t"
: "=a"(eax), "=d"(edx));
return (edx << 32) | eax;
}
#endif
u64 EstimateRDTSCFrequency();
} // namespace Common

View file

@ -1,108 +0,0 @@
#include "common/timer.h"
#ifdef _WIN64
#include <windows.h>
#endif
namespace Common {
Timer::Timer() {
#ifdef _WIN64
LARGE_INTEGER f;
QueryPerformanceFrequency(&f);
m_Frequency = f.QuadPart;
#else
#error Unimplemented Timer constructor
#endif
}
void Timer::Start() {
#ifdef _WIN64
LARGE_INTEGER c;
QueryPerformanceCounter(&c);
m_StartTime = c.QuadPart;
#else
#error Unimplemented Timer::Start()
#endif
m_is_timer_paused = false;
}
void Timer::Pause() {
#ifdef _WIN64
LARGE_INTEGER c;
QueryPerformanceCounter(&c);
m_PauseTime = c.QuadPart;
#else
#error Unimplemented Timer::Pause()
#endif
m_is_timer_paused = true;
}
void Timer::Resume() {
u64 current_time = 0;
#ifdef _WIN64
LARGE_INTEGER c;
QueryPerformanceCounter(&c);
current_time = c.QuadPart;
#else
#error Unimplemented Timer::Resume()
#endif
m_StartTime += current_time - m_PauseTime;
m_is_timer_paused = false;
}
double Timer::GetTimeMsec() const {
if (m_is_timer_paused) {
return 1000.0 * (static_cast<double>(m_PauseTime - m_StartTime)) / static_cast<double>(m_Frequency);
}
u64 current_time = 0;
#ifdef _WIN64
LARGE_INTEGER c;
QueryPerformanceCounter(&c);
current_time = c.QuadPart;
#else
#error Unimplemented Timer::GetTimeMsec()
#endif
return 1000.0 * (static_cast<double>(current_time - m_StartTime)) / static_cast<double>(m_Frequency);
}
double Timer::GetTimeSec() const {
if (m_is_timer_paused) {
return (static_cast<double>(m_PauseTime - m_StartTime)) / static_cast<double>(m_Frequency);
}
u64 current_time = 0;
#ifdef _WIN64
LARGE_INTEGER c;
QueryPerformanceCounter(&c);
current_time = c.QuadPart;
#else
#error Unimplemented Timer::GetTimeSec()
#endif
return (static_cast<double>(current_time - m_StartTime)) / static_cast<double>(m_Frequency);
}
u64 Timer::GetTicks() const {
if (m_is_timer_paused) {
return (m_PauseTime - m_StartTime);
}
u64 current_time = 0;
#ifdef _WIN64
LARGE_INTEGER c;
QueryPerformanceCounter(&c);
current_time = c.QuadPart;
#else
#error Unimplemented Timer::GetTicks()
#endif
return (current_time - m_StartTime);
}
u64 Timer::getQueryPerformanceCounter() {
LARGE_INTEGER c;
QueryPerformanceCounter(&c);
return c.QuadPart;
}
} // namespace Common

View file

@ -1,43 +0,0 @@
#pragma once
#include "common/types.h"
namespace Common {
class Timer final {
public:
Timer();
~Timer() = default;
void Start();
void Pause();
void Resume();
bool IsPaused() const {
return m_is_timer_paused;
}
u64 GetFrequency() const {
return m_Frequency;
}
double GetTimeMsec() const;
double GetTimeSec() const;
u64 GetTicks() const;
[[nodiscard]] static u64 getQueryPerformanceCounter();
public:
Timer(const Timer&) = delete;
Timer& operator=(const Timer&) = delete;
Timer(Timer&&) = delete;
Timer& operator=(Timer&&) = delete;
private:
bool m_is_timer_paused = true;
u64 m_Frequency{};
u64 m_StartTime{};
u64 m_PauseTime{};
};
} // namespace Common

View file

@ -1,5 +1,6 @@
#pragma once
#include <array>
#include <cstdint>
using s08 = std::int8_t;
@ -15,9 +16,12 @@ using u64 = std::uint64_t;
using f32 = float;
using f64 = double;
using u128 = std::array<std::uint64_t, 2>;
static_assert(sizeof(u128) == 16, "u128 must be 128 bits wide");
#define PS4_SYSV_ABI __attribute__((sysv_abi))
// UDLs for memory size values
constexpr u64 operator""_KB(u64 x) { return 1024ULL * x; }
constexpr u64 operator""_MB(u64 x) { return 1024_KB * x; }
constexpr u64 operator""_GB(u64 x) { return 1024_MB * x; }
constexpr unsigned long long operator""_KB(unsigned long long x) { return 1024ULL * x; }
constexpr unsigned long long operator""_MB(unsigned long long x) { return 1024_KB * x; }
constexpr unsigned long long operator""_GB(unsigned long long x) { return 1024_MB * x; }

115
src/common/uint128.h Normal file
View file

@ -0,0 +1,115 @@
// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <utility>
#ifdef _MSC_VER
#ifndef __clang__
#define HAS_INTRINSICS
#include <intrin.h>
#pragma intrinsic(__umulh)
#pragma intrinsic(_umul128)
#pragma intrinsic(_udiv128)
#else
#endif
#else
#include <cstring>
#endif
#include "common/types.h"
namespace Common {
// This function multiplies 2 u64 values and divides it by a u64 value.
[[nodiscard]] static inline u64 MultiplyAndDivide64(u64 a, u64 b, u64 d) {
#ifdef HAS_INTRINSICS
u128 r{};
r[0] = _umul128(a, b, &r[1]);
u64 remainder;
return _udiv128(r[1], r[0], d, &remainder);
#else
const u64 diva = a / d;
const u64 moda = a % d;
const u64 divb = b / d;
const u64 modb = b % d;
return diva * b + moda * divb + moda * modb / d;
#endif
}
// This function multiplies 2 u64 values and produces a u128 value;
[[nodiscard]] static inline u128 Multiply64Into128(u64 a, u64 b) {
u128 result;
#ifdef HAS_INTRINSICS
result[0] = _umul128(a, b, &result[1]);
#else
unsigned __int128 tmp = a;
tmp *= b;
std::memcpy(&result, &tmp, sizeof(u128));
#endif
return result;
}
[[nodiscard]] static inline u64 GetFixedPoint64Factor(u64 numerator, u64 divisor) {
#ifdef __SIZEOF_INT128__
const auto base = static_cast<unsigned __int128>(numerator) << 64ULL;
return static_cast<u64>(base / divisor);
#elif defined(_M_X64) || defined(_M_ARM64)
std::array<u64, 2> r = {0, numerator};
u64 remainder;
return _udiv128(r[1], r[0], divisor, &remainder);
#else
// This one is bit more inaccurate.
return MultiplyAndDivide64(std::numeric_limits<u64>::max(), numerator, divisor);
#endif
}
[[nodiscard]] static inline u64 MultiplyHigh(u64 a, u64 b) {
#ifdef __SIZEOF_INT128__
return (static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b)) >> 64;
#elif defined(_M_X64) || defined(_M_ARM64)
return __umulh(a, b); // MSVC
#else
// Generic fallback
const u64 a_lo = u32(a);
const u64 a_hi = a >> 32;
const u64 b_lo = u32(b);
const u64 b_hi = b >> 32;
const u64 a_x_b_hi = a_hi * b_hi;
const u64 a_x_b_mid = a_hi * b_lo;
const u64 b_x_a_mid = b_hi * a_lo;
const u64 a_x_b_lo = a_lo * b_lo;
const u64 carry_bit = (static_cast<u64>(static_cast<u32>(a_x_b_mid)) +
static_cast<u64>(static_cast<u32>(b_x_a_mid)) + (a_x_b_lo >> 32)) >>
32;
const u64 multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit;
return multhi;
#endif
}
// This function divides a u128 by a u32 value and produces two u64 values:
// the result of division and the remainder
[[nodiscard]] static inline std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor) {
u64 remainder = dividend[0] % divisor;
u64 accum = dividend[0] / divisor;
if (dividend[1] == 0)
return {accum, remainder};
// We ignore dividend[1] / divisor as that overflows
const u64 first_segment = (dividend[1] % divisor) << 32;
accum += (first_segment / divisor) << 32;
const u64 second_segment = (first_segment % divisor) << 32;
accum += (second_segment / divisor);
remainder += second_segment % divisor;
if (remainder >= divisor) {
accum++;
remainder -= divisor;
}
return {accum, remainder};
}
} // namespace Common