shadPS4/src/core/libraries/kernel/equeue.cpp
2024-12-31 05:59:14 +02:00

372 lines
12 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <thread>
#include "common/assert.h"
#include "common/debug.h"
#include "common/logging/log.h"
#include "core/libraries/kernel/equeue.h"
#include "core/libraries/kernel/orbis_error.h"
#include "core/libraries/libs.h"
namespace Libraries::Kernel {
// Events are uniquely identified by id and filter.
bool EqueueInternal::AddEvent(EqueueEvent& event) {
std::scoped_lock lock{m_mutex};
event.time_added = std::chrono::steady_clock::now();
const auto& it = std::ranges::find(m_events, event);
if (it != m_events.cend()) {
*it = std::move(event);
} else {
m_events.emplace_back(std::move(event));
}
return true;
}
bool EqueueInternal::RemoveEvent(u64 id, s16 filter) {
bool has_found = false;
std::scoped_lock lock{m_mutex};
const auto& it = std::ranges::find_if(m_events, [id, filter](auto& ev) {
return ev.event.ident == id && ev.event.filter == filter;
});
if (it != m_events.cend()) {
m_events.erase(it);
has_found = true;
}
return has_found;
}
int EqueueInternal::WaitForEvents(SceKernelEvent* ev, int num, u32 micros) {
int count = 0;
const auto predicate = [&] {
count = GetTriggeredEvents(ev, num);
return count > 0;
};
if (micros == 0) {
std::unique_lock lock{m_mutex};
m_cond.wait(lock, predicate);
} else {
std::unique_lock lock{m_mutex};
m_cond.wait_for(lock, std::chrono::microseconds(micros), predicate);
}
if (HasSmallTimer()) {
if (count > 0) {
const auto time_waited = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::steady_clock::now() - m_events[0].time_added)
.count();
count = WaitForSmallTimer(ev, num, std::max(0l, long(micros - time_waited)));
}
small_timer_event.event.data = 0;
}
if (ev->flags & SceKernelEvent::Flags::OneShot) {
for (auto ev_id = 0u; ev_id < count; ++ev_id) {
RemoveEvent(ev->ident, ev->filter);
}
}
return count;
}
bool EqueueInternal::TriggerEvent(u64 ident, s16 filter, void* trigger_data) {
bool has_found = false;
{
std::scoped_lock lock{m_mutex};
for (auto& event : m_events) {
if (event.event.ident == ident && event.event.filter == filter) {
event.Trigger(trigger_data);
has_found = true;
}
}
}
m_cond.notify_one();
return has_found;
}
int EqueueInternal::GetTriggeredEvents(SceKernelEvent* ev, int num) {
int count = 0;
for (auto& event : m_events) {
if (event.IsTriggered()) {
// Event should not trigger again
event.ResetTriggerState();
if (event.event.flags & SceKernelEvent::Flags::Clear) {
event.Clear();
}
ev[count++] = event.event;
if (count == num) {
break;
}
}
}
return count;
}
bool EqueueInternal::AddSmallTimer(EqueueEvent& ev) {
// We assume that only one timer event (with the same ident across calls)
// can be posted to the queue, based on observations so far. In the opposite case,
// the small timer storage and wait logic should be reworked.
ASSERT(!HasSmallTimer() || small_timer_event.event.ident == ev.event.ident);
ev.time_added = std::chrono::steady_clock::now();
small_timer_event = std::move(ev);
return true;
}
int EqueueInternal::WaitForSmallTimer(SceKernelEvent* ev, int num, u32 micros) {
int count{};
ASSERT(num == 1);
auto curr_clock = std::chrono::steady_clock::now();
const auto wait_end_us = curr_clock + std::chrono::microseconds{micros};
do {
curr_clock = std::chrono::steady_clock::now();
{
std::scoped_lock lock{m_mutex};
if ((curr_clock - small_timer_event.time_added) >
std::chrono::microseconds{small_timer_event.event.data}) {
ev[count++] = small_timer_event.event;
small_timer_event.event.data = 0;
break;
}
}
std::this_thread::yield();
} while (curr_clock < wait_end_us);
return count;
}
extern boost::asio::io_context io_context;
extern void KernelSignalRequest();
static constexpr auto HrTimerSpinlockThresholdUs = 1200u;
static void SmallTimerCallback(const boost::system::error_code& error, SceKernelEqueue eq,
SceKernelEvent kevent) {
static EqueueEvent event;
event.event = kevent;
event.event.data = HrTimerSpinlockThresholdUs;
eq->AddSmallTimer(event);
eq->TriggerEvent(kevent.ident, SceKernelEvent::Filter::HrTimer, kevent.udata);
}
int PS4_SYSV_ABI sceKernelCreateEqueue(SceKernelEqueue* eq, const char* name) {
if (eq == nullptr) {
LOG_ERROR(Kernel_Event, "Event queue is null!");
return ORBIS_KERNEL_ERROR_EINVAL;
}
if (name == nullptr) {
LOG_ERROR(Kernel_Event, "Event queue name is null!");
return ORBIS_KERNEL_ERROR_EINVAL;
}
// Maximum is 32 including null terminator
static constexpr size_t MaxEventQueueNameSize = 32;
if (std::strlen(name) > MaxEventQueueNameSize) {
LOG_ERROR(Kernel_Event, "Event queue name exceeds 32 bytes!");
return ORBIS_KERNEL_ERROR_ENAMETOOLONG;
}
LOG_INFO(Kernel_Event, "name = {}", name);
*eq = new EqueueInternal(name);
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelDeleteEqueue(SceKernelEqueue eq) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
delete eq;
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelWaitEqueue(SceKernelEqueue eq, SceKernelEvent* ev, int num, int* out,
SceKernelUseconds* timo) {
HLE_TRACE;
TRACE_HINT(eq->GetName());
LOG_TRACE(Kernel_Event, "equeue = {} num = {}", eq->GetName(), num);
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (ev == nullptr) {
return ORBIS_KERNEL_ERROR_EFAULT;
}
if (num < 1) {
return ORBIS_KERNEL_ERROR_EINVAL;
}
if (eq->HasSmallTimer()) {
ASSERT(timo && *timo);
*out = eq->WaitForSmallTimer(ev, num, *timo);
} else {
if (timo == nullptr) { // wait until an event arrives without timing out
*out = eq->WaitForEvents(ev, num, 0);
}
if (timo != nullptr) {
// Only events that have already arrived at the time of this function call can be
// received
if (*timo == 0) {
*out = eq->GetTriggeredEvents(ev, num);
} else {
// Wait until an event arrives with timing out
*out = eq->WaitForEvents(ev, num, *timo);
}
}
}
if (*out == 0) {
return ORBIS_KERNEL_ERROR_ETIMEDOUT;
}
return ORBIS_OK;
}
s32 PS4_SYSV_ABI sceKernelAddHRTimerEvent(SceKernelEqueue eq, int id, timespec* ts, void* udata) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (ts->tv_sec > 100 || ts->tv_nsec < 100'000) {
return ORBIS_KERNEL_ERROR_EINVAL;
}
ASSERT(ts->tv_nsec > 1000); // assume 1us resolution
const auto total_us = ts->tv_sec * 1000'000 + ts->tv_nsec / 1000;
EqueueEvent event{};
event.event.ident = id;
event.event.filter = SceKernelEvent::Filter::HrTimer;
event.event.flags = SceKernelEvent::Flags::Add | SceKernelEvent::Flags::OneShot;
event.event.fflags = 0;
event.event.data = total_us;
event.event.udata = udata;
// HR timers cannot be implemented within the existing event queue architecture due to the
// slowness of the notification mechanism. For instance, a 100us timer will lose its precision
// as the trigger time drifts by +50-700%, depending on the host PC and workload. To address
// this issue, we use a spinlock for small waits (which can be adjusted using
// `HrTimerSpinlockThresholdUs`) and fall back to boost asio timers if the time to tick is
// large. Even for large delays, we truncate a small portion to complete the wait
// using the spinlock, prioritizing precision.
if (total_us < HrTimerSpinlockThresholdUs) {
return eq->AddSmallTimer(event) ? ORBIS_OK : ORBIS_KERNEL_ERROR_ENOMEM;
}
event.timer = std::make_unique<boost::asio::steady_timer>(
io_context, std::chrono::microseconds(total_us - HrTimerSpinlockThresholdUs));
event.timer->async_wait(std::bind(SmallTimerCallback, std::placeholders::_1, eq, event.event));
if (!eq->AddEvent(event)) {
return ORBIS_KERNEL_ERROR_ENOMEM;
}
KernelSignalRequest();
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelAddUserEvent(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
EqueueEvent event{};
event.event.ident = id;
event.event.filter = SceKernelEvent::Filter::User;
event.event.udata = 0;
event.event.flags = SceKernelEvent::Flags::Add;
event.event.fflags = 0;
event.event.data = 0;
return eq->AddEvent(event) ? ORBIS_OK : ORBIS_KERNEL_ERROR_ENOMEM;
}
int PS4_SYSV_ABI sceKernelAddUserEventEdge(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
EqueueEvent event{};
event.event.ident = id;
event.event.filter = SceKernelEvent::Filter::User;
event.event.udata = 0;
event.event.flags = SceKernelEvent::Flags::Add | SceKernelEvent::Flags::Clear;
event.event.fflags = 0;
event.event.data = 0;
return eq->AddEvent(event) ? ORBIS_OK : ORBIS_KERNEL_ERROR_ENOMEM;
}
void* PS4_SYSV_ABI sceKernelGetEventUserData(const SceKernelEvent* ev) {
ASSERT(ev);
return ev->udata;
}
u64 PS4_SYSV_ABI sceKernelGetEventId(const SceKernelEvent* ev) {
return ev->ident;
}
int PS4_SYSV_ABI sceKernelTriggerUserEvent(SceKernelEqueue eq, int id, void* udata) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (!eq->TriggerEvent(id, SceKernelEvent::Filter::User, udata)) {
return ORBIS_KERNEL_ERROR_ENOENT;
}
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelDeleteUserEvent(SceKernelEqueue eq, int id) {
if (eq == nullptr) {
return ORBIS_KERNEL_ERROR_EBADF;
}
if (!eq->RemoveEvent(id, SceKernelEvent::Filter::User)) {
return ORBIS_KERNEL_ERROR_ENOENT;
}
return ORBIS_OK;
}
int PS4_SYSV_ABI sceKernelGetEventFilter(const SceKernelEvent* ev) {
return ev->filter;
}
u64 PS4_SYSV_ABI sceKernelGetEventData(const SceKernelEvent* ev) {
return ev->data;
}
void RegisterEventQueue(Core::Loader::SymbolsResolver* sym) {
LIB_FUNCTION("D0OdFMjp46I", "libkernel", 1, "libkernel", 1, 1, sceKernelCreateEqueue);
LIB_FUNCTION("jpFjmgAC5AE", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteEqueue);
LIB_FUNCTION("fzyMKs9kim0", "libkernel", 1, "libkernel", 1, 1, sceKernelWaitEqueue);
LIB_FUNCTION("vz+pg2zdopI", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventUserData);
LIB_FUNCTION("4R6-OvI2cEA", "libkernel", 1, "libkernel", 1, 1, sceKernelAddUserEvent);
LIB_FUNCTION("WDszmSbWuDk", "libkernel", 1, "libkernel", 1, 1, sceKernelAddUserEventEdge);
LIB_FUNCTION("R74tt43xP6k", "libkernel", 1, "libkernel", 1, 1, sceKernelAddHRTimerEvent);
LIB_FUNCTION("F6e0kwo4cnk", "libkernel", 1, "libkernel", 1, 1, sceKernelTriggerUserEvent);
LIB_FUNCTION("LJDwdSNTnDg", "libkernel", 1, "libkernel", 1, 1, sceKernelDeleteUserEvent);
LIB_FUNCTION("mJ7aghmgvfc", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventId);
LIB_FUNCTION("23CPPI1tyBY", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventFilter);
LIB_FUNCTION("kwGyyjohI50", "libkernel", 1, "libkernel", 1, 1, sceKernelGetEventData);
}
} // namespace Libraries::Kernel