shadPS4/src/shader_recompiler/frontend/translate/vector_alu.cpp
2025-01-24 03:07:36 -08:00

1381 lines
49 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "shader_recompiler/frontend/opcodes.h"
#include "shader_recompiler/frontend/translate/translate.h"
#include "shader_recompiler/profile.h"
namespace Shader::Gcn {
void Translator::EmitVectorAlu(const GcnInst& inst) {
switch (inst.opcode) {
// VOP2
case Opcode::V_CNDMASK_B32:
return V_CNDMASK_B32(inst);
case Opcode::V_READLANE_B32:
return V_READLANE_B32(inst);
case Opcode::V_WRITELANE_B32:
return V_WRITELANE_B32(inst);
case Opcode::V_ADD_F32:
return V_ADD_F32(inst);
case Opcode::V_SUB_F32:
return V_SUB_F32(inst);
case Opcode::V_SUBREV_F32:
return V_SUBREV_F32(inst);
case Opcode::V_MAC_LEGACY_F32:
return V_MAC_F32(inst);
case Opcode::V_MUL_LEGACY_F32:
return V_MUL_F32(inst);
case Opcode::V_MUL_F32:
return V_MUL_F32(inst);
case Opcode::V_MUL_I32_I24:
return V_MUL_I32_I24(inst);
case Opcode::V_MUL_U32_U24:
return V_MUL_I32_I24(inst);
case Opcode::V_MIN_LEGACY_F32:
return V_MIN_F32(inst, true);
case Opcode::V_MAX_LEGACY_F32:
return V_MAX_F32(inst, true);
case Opcode::V_MIN_F32:
return V_MIN_F32(inst, false);
case Opcode::V_MAX_F32:
return V_MAX_F32(inst);
case Opcode::V_MIN_I32:
return V_MIN_I32(inst);
case Opcode::V_MAX_I32:
return V_MAX_U32(true, inst);
case Opcode::V_MIN_U32:
return V_MIN_U32(inst);
case Opcode::V_MAX_U32:
return V_MAX_U32(false, inst);
case Opcode::V_LSHR_B32:
return V_LSHR_B32(inst);
case Opcode::V_LSHRREV_B32:
return V_LSHRREV_B32(inst);
case Opcode::V_ASHR_I32:
return V_ASHR_I32(inst);
case Opcode::V_ASHRREV_I32:
return V_ASHRREV_I32(inst);
case Opcode::V_LSHL_B32:
return V_LSHL_B32(inst);
case Opcode::V_LSHLREV_B32:
return V_LSHLREV_B32(inst);
case Opcode::V_AND_B32:
return V_AND_B32(inst);
case Opcode::V_OR_B32:
return V_OR_B32(false, inst);
case Opcode::V_XOR_B32:
return V_OR_B32(true, inst);
case Opcode::V_BFM_B32:
return V_BFM_B32(inst);
case Opcode::V_MAC_F32:
return V_MAC_F32(inst);
case Opcode::V_MADMK_F32:
return V_MADMK_F32(inst);
case Opcode::V_MADAK_F32:
return V_FMA_F32(inst);
case Opcode::V_BCNT_U32_B32:
return V_BCNT_U32_B32(inst);
case Opcode::V_MBCNT_LO_U32_B32:
return V_MBCNT_U32_B32(true, inst);
case Opcode::V_MBCNT_HI_U32_B32:
return V_MBCNT_U32_B32(false, inst);
case Opcode::V_ADD_I32:
return V_ADD_I32(inst);
case Opcode::V_SUB_I32:
return V_SUB_I32(inst);
case Opcode::V_SUBREV_I32:
return V_SUBREV_I32(inst);
case Opcode::V_ADDC_U32:
return V_ADDC_U32(inst);
case Opcode::V_SUBB_U32:
return V_SUBB_U32(inst);
case Opcode::V_SUBBREV_U32:
return V_SUBBREV_U32(inst);
case Opcode::V_LDEXP_F32:
return V_LDEXP_F32(inst);
case Opcode::V_CVT_PKNORM_U16_F32:
return V_CVT_PKNORM_U16_F32(inst);
case Opcode::V_CVT_PKRTZ_F16_F32:
return V_CVT_PKRTZ_F16_F32(inst);
// VOP1
case Opcode::V_MOV_B32:
return V_MOV(inst);
case Opcode::V_READFIRSTLANE_B32:
return V_READFIRSTLANE_B32(inst);
case Opcode::V_CVT_I32_F64:
return V_CVT_I32_F64(inst);
case Opcode::V_CVT_F64_I32:
return V_CVT_F64_I32(inst);
case Opcode::V_CVT_F32_I32:
return V_CVT_F32_I32(inst);
case Opcode::V_CVT_F32_U32:
return V_CVT_F32_U32(inst);
case Opcode::V_CVT_U32_F32:
return V_CVT_U32_F32(inst);
case Opcode::V_CVT_I32_F32:
return V_CVT_I32_F32(inst);
case Opcode::V_CVT_F16_F32:
return V_CVT_F16_F32(inst);
case Opcode::V_CVT_F32_F16:
return V_CVT_F32_F16(inst);
case Opcode::V_CVT_FLR_I32_F32:
return V_CVT_FLR_I32_F32(inst);
case Opcode::V_CVT_F32_F64:
return V_CVT_F32_F64(inst);
case Opcode::V_CVT_F64_F32:
return V_CVT_F64_F32(inst);
case Opcode::V_CVT_RPI_I32_F32:
return V_CVT_RPI_I32_F32(inst);
case Opcode::V_CVT_OFF_F32_I4:
return V_CVT_OFF_F32_I4(inst);
case Opcode::V_CVT_F32_UBYTE0:
return V_CVT_F32_UBYTE(0, inst);
case Opcode::V_CVT_F32_UBYTE1:
return V_CVT_F32_UBYTE(1, inst);
case Opcode::V_CVT_F32_UBYTE2:
return V_CVT_F32_UBYTE(2, inst);
case Opcode::V_CVT_F32_UBYTE3:
return V_CVT_F32_UBYTE(3, inst);
case Opcode::V_FRACT_F32:
return V_FRACT_F32(inst);
case Opcode::V_TRUNC_F32:
return V_TRUNC_F32(inst);
case Opcode::V_CEIL_F32:
return V_CEIL_F32(inst);
case Opcode::V_RNDNE_F32:
return V_RNDNE_F32(inst);
case Opcode::V_FLOOR_F32:
return V_FLOOR_F32(inst);
case Opcode::V_EXP_F32:
return V_EXP_F32(inst);
case Opcode::V_LOG_F32:
return V_LOG_F32(inst);
case Opcode::V_RCP_F32:
return V_RCP_F32(inst);
case Opcode::V_RCP_F64:
return V_RCP_F64(inst);
case Opcode::V_RCP_IFLAG_F32:
return V_RCP_F32(inst);
case Opcode::V_RCP_CLAMP_F32:
return V_RCP_F32(inst);
case Opcode::V_RSQ_CLAMP_F32:
return V_RSQ_F32(inst);
case Opcode::V_RSQ_LEGACY_F32:
return V_RSQ_F32(inst);
case Opcode::V_RSQ_F32:
return V_RSQ_F32(inst);
case Opcode::V_SQRT_F32:
return V_SQRT_F32(inst);
case Opcode::V_SIN_F32:
return V_SIN_F32(inst);
case Opcode::V_COS_F32:
return V_COS_F32(inst);
case Opcode::V_NOT_B32:
return V_NOT_B32(inst);
case Opcode::V_BFREV_B32:
return V_BFREV_B32(inst);
case Opcode::V_FFBH_U32:
return V_FFBH_U32(inst);
case Opcode::V_FFBL_B32:
return V_FFBL_B32(inst);
case Opcode::V_FREXP_EXP_I32_F64:
return V_FREXP_EXP_I32_F64(inst);
case Opcode::V_FREXP_MANT_F64:
return V_FREXP_MANT_F64(inst);
case Opcode::V_FRACT_F64:
return V_FRACT_F64(inst);
case Opcode::V_FREXP_EXP_I32_F32:
return V_FREXP_EXP_I32_F32(inst);
case Opcode::V_FREXP_MANT_F32:
return V_FREXP_MANT_F32(inst);
case Opcode::V_MOVRELD_B32:
return V_MOVRELD_B32(inst);
case Opcode::V_MOVRELS_B32:
return V_MOVRELS_B32(inst);
case Opcode::V_MOVRELSD_B32:
return V_MOVRELSD_B32(inst);
// VOPC
// V_CMP_{OP16}_F32
case Opcode::V_CMP_F_F32:
return V_CMP_F32(ConditionOp::F, false, inst);
case Opcode::V_CMP_LT_F32:
return V_CMP_F32(ConditionOp::LT, false, inst);
case Opcode::V_CMP_EQ_F32:
return V_CMP_F32(ConditionOp::EQ, false, inst);
case Opcode::V_CMP_LE_F32:
return V_CMP_F32(ConditionOp::LE, false, inst);
case Opcode::V_CMP_GT_F32:
return V_CMP_F32(ConditionOp::GT, false, inst);
case Opcode::V_CMP_LG_F32:
return V_CMP_F32(ConditionOp::LG, false, inst);
case Opcode::V_CMP_GE_F32:
return V_CMP_F32(ConditionOp::GE, false, inst);
case Opcode::V_CMP_U_F32:
return V_CMP_F32(ConditionOp::U, false, inst);
case Opcode::V_CMP_NGE_F32:
return V_CMP_F32(ConditionOp::LT, false, inst);
case Opcode::V_CMP_NGT_F32:
return V_CMP_F32(ConditionOp::LE, false, inst);
case Opcode::V_CMP_NLE_F32:
return V_CMP_F32(ConditionOp::GT, false, inst);
case Opcode::V_CMP_NEQ_F32:
return V_CMP_F32(ConditionOp::LG, false, inst);
case Opcode::V_CMP_NLT_F32:
return V_CMP_F32(ConditionOp::GE, false, inst);
// V_CMPX_{OP16}_F32
case Opcode::V_CMPX_F_F32:
return V_CMP_F32(ConditionOp::F, true, inst);
case Opcode::V_CMPX_LT_F32:
return V_CMP_F32(ConditionOp::LT, true, inst);
case Opcode::V_CMPX_EQ_F32:
return V_CMP_F32(ConditionOp::EQ, true, inst);
case Opcode::V_CMPX_LE_F32:
return V_CMP_F32(ConditionOp::LE, true, inst);
case Opcode::V_CMPX_GT_F32:
return V_CMP_F32(ConditionOp::GT, true, inst);
case Opcode::V_CMPX_LG_F32:
return V_CMP_F32(ConditionOp::LG, true, inst);
case Opcode::V_CMPX_GE_F32:
return V_CMP_F32(ConditionOp::GE, true, inst);
case Opcode::V_CMPX_NGE_F32:
return V_CMP_F32(ConditionOp::LT, true, inst);
case Opcode::V_CMPX_NLG_F32:
return V_CMP_F32(ConditionOp::EQ, true, inst);
case Opcode::V_CMPX_NGT_F32:
return V_CMP_F32(ConditionOp::LE, true, inst);
case Opcode::V_CMPX_NLE_F32:
return V_CMP_F32(ConditionOp::GT, true, inst);
case Opcode::V_CMPX_NEQ_F32:
return V_CMP_F32(ConditionOp::LG, true, inst);
case Opcode::V_CMPX_NLT_F32:
return V_CMP_F32(ConditionOp::GE, true, inst);
case Opcode::V_CMPX_TRU_F32:
return V_CMP_F32(ConditionOp::TRU, true, inst);
// V_CMP_{OP8}_I32
case Opcode::V_CMP_LT_I32:
return V_CMP_U32(ConditionOp::LT, true, false, inst);
case Opcode::V_CMP_EQ_I32:
return V_CMP_U32(ConditionOp::EQ, true, false, inst);
case Opcode::V_CMP_LE_I32:
return V_CMP_U32(ConditionOp::LE, true, false, inst);
case Opcode::V_CMP_GT_I32:
return V_CMP_U32(ConditionOp::GT, true, false, inst);
case Opcode::V_CMP_NE_I32:
return V_CMP_U32(ConditionOp::LG, true, false, inst);
case Opcode::V_CMP_GE_I32:
return V_CMP_U32(ConditionOp::GE, true, false, inst);
case Opcode::V_CMPX_LE_I32:
return V_CMP_U32(ConditionOp::LE, true, true, inst);
// V_CMPX_{OP8}_I32
case Opcode::V_CMPX_LT_I32:
return V_CMP_U32(ConditionOp::LT, true, true, inst);
case Opcode::V_CMPX_EQ_I32:
return V_CMP_U32(ConditionOp::EQ, true, true, inst);
case Opcode::V_CMPX_GT_I32:
return V_CMP_U32(ConditionOp::GT, true, true, inst);
case Opcode::V_CMPX_LG_I32:
return V_CMP_U32(ConditionOp::LG, true, true, inst);
case Opcode::V_CMPX_GE_I32:
return V_CMP_U32(ConditionOp::GE, true, true, inst);
// V_CMP_{OP8}_U32
case Opcode::V_CMP_F_U32:
return V_CMP_U32(ConditionOp::F, false, false, inst);
case Opcode::V_CMP_LT_U32:
return V_CMP_U32(ConditionOp::LT, false, false, inst);
case Opcode::V_CMP_EQ_U32:
return V_CMP_U32(ConditionOp::EQ, false, false, inst);
case Opcode::V_CMP_LE_U32:
return V_CMP_U32(ConditionOp::LE, false, false, inst);
case Opcode::V_CMP_GT_U32:
return V_CMP_U32(ConditionOp::GT, false, false, inst);
case Opcode::V_CMP_NE_U32:
return V_CMP_U32(ConditionOp::LG, false, false, inst);
case Opcode::V_CMP_GE_U32:
return V_CMP_U32(ConditionOp::GE, false, false, inst);
case Opcode::V_CMP_TRU_U32:
return V_CMP_U32(ConditionOp::TRU, false, false, inst);
// V_CMPX_{OP8}_U32
case Opcode::V_CMPX_F_U32:
return V_CMP_U32(ConditionOp::F, false, true, inst);
case Opcode::V_CMPX_LT_U32:
return V_CMP_U32(ConditionOp::LT, false, true, inst);
case Opcode::V_CMPX_EQ_U32:
return V_CMP_U32(ConditionOp::EQ, false, true, inst);
case Opcode::V_CMPX_LE_U32:
return V_CMP_U32(ConditionOp::LE, false, true, inst);
case Opcode::V_CMPX_GT_U32:
return V_CMP_U32(ConditionOp::GT, false, true, inst);
case Opcode::V_CMPX_NE_U32:
return V_CMP_U32(ConditionOp::LG, false, true, inst);
case Opcode::V_CMPX_GE_U32:
return V_CMP_U32(ConditionOp::GE, false, true, inst);
case Opcode::V_CMPX_TRU_U32:
return V_CMP_U32(ConditionOp::TRU, false, true, inst);
// V_CMP_{OP8}_U64
case Opcode::V_CMP_NE_U64:
return V_CMP_NE_U64(inst);
case Opcode::V_CMP_CLASS_F32:
return V_CMP_CLASS_F32(inst);
// VOP3a
case Opcode::V_MAD_LEGACY_F32:
return V_MAD_F32(inst);
case Opcode::V_MAD_F32:
return V_MAD_F32(inst);
case Opcode::V_MAD_I32_I24:
return V_MAD_I32_I24(inst);
case Opcode::V_MAD_U32_U24:
return V_MAD_U32_U24(inst);
case Opcode::V_CUBEID_F32:
return V_CUBEID_F32(inst);
case Opcode::V_CUBESC_F32:
return V_CUBESC_F32(inst);
case Opcode::V_CUBETC_F32:
return V_CUBETC_F32(inst);
case Opcode::V_CUBEMA_F32:
return V_CUBEMA_F32(inst);
case Opcode::V_BFE_U32:
return V_BFE_U32(false, inst);
case Opcode::V_BFE_I32:
return V_BFE_U32(true, inst);
case Opcode::V_BFI_B32:
return V_BFI_B32(inst);
case Opcode::V_FMA_F32:
return V_FMA_F32(inst);
case Opcode::V_FMA_F64:
return V_FMA_F64(inst);
case Opcode::V_MIN3_F32:
return V_MIN3_F32(inst);
case Opcode::V_MIN3_I32:
return V_MIN3_I32(inst);
case Opcode::V_MIN3_U32:
return V_MIN3_U32(inst);
case Opcode::V_MAX3_F32:
return V_MAX3_F32(inst);
case Opcode::V_MAX3_I32:
return V_MAX3_U32(true, inst);
case Opcode::V_MAX3_U32:
return V_MAX3_U32(false, inst);
case Opcode::V_MED3_F32:
return V_MED3_F32(inst);
case Opcode::V_MED3_I32:
return V_MED3_I32(inst);
case Opcode::V_MED3_U32:
return V_MED3_U32(inst);
case Opcode::V_SAD_U32:
return V_SAD_U32(inst);
case Opcode::V_CVT_PK_U16_U32:
return V_CVT_PK_U16_U32(inst);
case Opcode::V_CVT_PK_U8_F32:
return V_CVT_PK_U8_F32(inst);
case Opcode::V_LSHL_B64:
return V_LSHL_B64(inst);
case Opcode::V_MUL_F64:
return V_MUL_F64(inst);
case Opcode::V_MAX_F64:
return V_MAX_F64(inst);
case Opcode::V_MUL_LO_U32:
return V_MUL_LO_U32(inst);
case Opcode::V_MUL_HI_U32:
return V_MUL_HI_U32(false, inst);
case Opcode::V_MUL_LO_I32:
return V_MUL_LO_U32(inst);
case Opcode::V_MAD_U64_U32:
return V_MAD_U64_U32(inst);
case Opcode::V_NOP:
return;
default:
LogMissingOpcode(inst);
}
}
// VOP2
void Translator::V_CNDMASK_B32(const GcnInst& inst) {
const IR::ScalarReg flag_reg{inst.src[2].code};
const IR::U1 flag = inst.src[2].field == OperandField::ScalarGPR
? ir.GetThreadBitScalarReg(flag_reg)
: ir.GetVcc();
const IR::Value result =
ir.Select(flag, GetSrc<IR::F32>(inst.src[1]), GetSrc<IR::F32>(inst.src[0]));
SetDst(inst.dst[0], IR::U32F32{result});
}
void Translator::V_ADD_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPAdd(src0, src1));
}
void Translator::V_SUB_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPSub(src0, src1));
}
void Translator::V_SUBREV_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPSub(src1, src0));
}
void Translator::V_MUL_F32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.FPMul(GetSrc<IR::F32>(inst.src[0]), GetSrc<IR::F32>(inst.src[1])));
}
void Translator::V_MUL_I32_I24(const GcnInst& inst) {
const IR::U32 src0{ir.BitFieldExtract(GetSrc(inst.src[0]), ir.Imm32(0), ir.Imm32(24), true)};
const IR::U32 src1{ir.BitFieldExtract(GetSrc(inst.src[1]), ir.Imm32(0), ir.Imm32(24), true)};
SetDst(inst.dst[0], ir.IMul(src0, src1));
}
void Translator::V_MIN_F32(const GcnInst& inst, bool is_legacy) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPMin(src0, src1, is_legacy));
}
void Translator::V_MAX_F32(const GcnInst& inst, bool is_legacy) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPMax(src0, src1, is_legacy));
}
void Translator::V_MIN_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.SMin(src0, src1));
}
void Translator::V_MIN_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IMin(src0, src1, false));
}
void Translator::V_MAX_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IMax(src0, src1, is_signed));
}
void Translator::V_LSHR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftRightLogical(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F))));
}
void Translator::V_LSHRREV_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftRightLogical(src1, ir.BitwiseAnd(src0, ir.Imm32(0x1F))));
}
void Translator::V_ASHR_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftRightArithmetic(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F))));
}
void Translator::V_ASHRREV_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftRightArithmetic(src1, ir.BitwiseAnd(src0, ir.Imm32(0x1F))));
}
void Translator::V_LSHL_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftLeftLogical(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F))));
}
void Translator::V_LSHLREV_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftLeftLogical(src1, ir.BitwiseAnd(src0, ir.Imm32(0x1F))));
}
void Translator::V_AND_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{ir.GetVectorReg(IR::VectorReg(inst.src[1].code))};
SetDst(inst.dst[0], ir.BitwiseAnd(src0, src1));
}
void Translator::V_OR_B32(bool is_xor, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{ir.GetVectorReg(IR::VectorReg(inst.src[1].code))};
SetDst(inst.dst[0], is_xor ? ir.BitwiseXor(src0, src1) : IR::U32(ir.BitwiseOr(src0, src1)));
}
void Translator::V_BFM_B32(const GcnInst& inst) {
// bitmask width
const IR::U32 src0{ir.BitFieldExtract(GetSrc(inst.src[0]), ir.Imm32(0), ir.Imm32(4))};
// bitmask offset
const IR::U32 src1{ir.BitFieldExtract(GetSrc(inst.src[1]), ir.Imm32(0), ir.Imm32(4))};
const IR::U32 ones = ir.ISub(ir.ShiftLeftLogical(ir.Imm32(1), src0), ir.Imm32(1));
SetDst(inst.dst[0], ir.ShiftLeftLogical(ones, src1));
}
void Translator::V_MAC_F32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.FPFma(GetSrc<IR::F32>(inst.src[0]), GetSrc<IR::F32>(inst.src[1]),
GetSrc<IR::F32>(inst.dst[0])));
}
void Translator::V_MADMK_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 k{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPFma(src0, k, src1));
}
void Translator::V_BCNT_U32_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IAdd(ir.BitCount(src0), src1));
}
void Translator::V_MBCNT_U32_B32(bool is_low, const GcnInst& inst) {
if (!is_low) {
// v_mbcnt_hi_u32_b32 v2, -1, 0
if (inst.src[0].field == OperandField::SignedConstIntNeg && inst.src[0].code == 193 &&
inst.src[1].field == OperandField::ConstZero) {
return;
}
// v_mbcnt_hi_u32_b32 vX, exec_hi, 0
if (inst.src[0].field == OperandField::ExecHi &&
inst.src[1].field == OperandField::ConstZero) {
return;
}
} else {
// v_mbcnt_lo_u32_b32 v2, -1, vX
// used combined with above to fetch lane id in non-compute stages
if (inst.src[0].field == OperandField::SignedConstIntNeg && inst.src[0].code == 193) {
SetDst(inst.dst[0], ir.LaneId());
}
// v_mbcnt_lo_u32_b32 v20, exec_lo, vX
// used combined in above for append buffer indexing.
if (inst.src[0].field == OperandField::ExecLo) {
SetDst(inst.dst[0], ir.Imm32(0));
}
}
}
void Translator::V_ADD_I32(const GcnInst& inst) {
// Signed or unsigned components
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{ir.GetVectorReg(IR::VectorReg(inst.src[1].code))};
const IR::U32 result{ir.IAdd(src0, src1)};
SetDst(inst.dst[0], result);
// TODO: Carry-out with signed or unsigned components
}
void Translator::V_SUB_I32(const GcnInst& inst) {
// Unsigned components
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.ISub(src0, src1)};
SetDst(inst.dst[0], result);
const IR::U1 did_underflow{ir.IGreaterThan(src1, src0, false)};
SetCarryOut(inst, did_underflow);
}
void Translator::V_SUBREV_I32(const GcnInst& inst) {
// Unsigned components
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 result{ir.ISub(src1, src0)};
SetDst(inst.dst[0], result);
const IR::U1 did_underflow{ir.IGreaterThan(src0, src1, false)};
SetCarryOut(inst, did_underflow);
}
void Translator::V_ADDC_U32(const GcnInst& inst) {
// Unsigned components
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 carry{GetCarryIn(inst)};
const IR::U32 result{ir.IAdd(ir.IAdd(src0, src1), carry)};
SetDst(inst.dst[0], result);
const IR::U1 less_src0{ir.ILessThan(result, src0, false)};
const IR::U1 less_src1{ir.ILessThan(result, src1, false)};
const IR::U1 did_overflow{ir.LogicalOr(less_src0, less_src1)};
SetCarryOut(inst, did_overflow);
}
void Translator::V_SUBB_U32(const GcnInst& inst) {
// Signed or unsigned components
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 carry{GetCarryIn(inst)};
const IR::U32 result{ir.ISub(ir.ISub(src0, src1), carry)};
SetDst(inst.dst[0], result);
// TODO: Carry-out with signed or unsigned components
}
void Translator::V_SUBBREV_U32(const GcnInst& inst) {
// Signed or unsigned components
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 carry{GetCarryIn(inst)};
const IR::U32 result{ir.ISub(ir.ISub(src1, src0), carry)};
SetDst(inst.dst[0], result);
// TODO: Carry-out with signed or unsigned components
}
void Translator::V_LDEXP_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.FPLdexp(src0, src1));
}
void Translator::V_CVT_PKNORM_U16_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::U32 dst0 = ir.ConvertFToU(32, ir.FPMul(src0, ir.Imm32(65535.f)));
const IR::U32 dst1 = ir.ConvertFToU(32, ir.FPMul(src1, ir.Imm32(65535.f)));
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, ir.BitFieldInsert(dst0, dst1, ir.Imm32(16), ir.Imm32(16)));
}
void Translator::V_CVT_PKRTZ_F16_F32(const GcnInst& inst) {
const IR::Value vec_f32 =
ir.CompositeConstruct(GetSrc<IR::F32>(inst.src[0]), GetSrc<IR::F32>(inst.src[1]));
SetDst(inst.dst[0], ir.PackHalf2x16(vec_f32));
}
// VOP1
void Translator::V_MOV(const GcnInst& inst) {
SetDst(inst.dst[0], GetSrc<IR::F32>(inst.src[0]));
}
void Translator::V_CVT_I32_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertFToS(32, src0));
}
void Translator::V_CVT_F64_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst64(inst.dst[0], ir.ConvertSToF(64, 32, src0));
}
void Translator::V_CVT_F32_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertSToF(32, 32, src0));
}
void Translator::V_CVT_F32_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertUToF(32, 32, src0));
}
void Translator::V_CVT_U32_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertFToU(32, src0));
}
void Translator::V_CVT_I32_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertFToS(32, src0));
}
void Translator::V_CVT_F16_F32(const GcnInst& inst) {
const IR::F32 src0 = GetSrc<IR::F32>(inst.src[0]);
const IR::F16 src0fp16 = ir.FPConvert(16, src0);
SetDst(inst.dst[0], ir.UConvert(32, ir.BitCast<IR::U16>(src0fp16)));
}
void Translator::V_CVT_F32_F16(const GcnInst& inst) {
const IR::U32 src0 = GetSrc(inst.src[0]);
const IR::U16 src0l = ir.UConvert(16, src0);
SetDst(inst.dst[0], ir.FPConvert(32, ir.BitCast<IR::F16>(src0l)));
}
void Translator::V_CVT_RPI_I32_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertFToI(32, true, ir.FPFloor(ir.FPAdd(src0, ir.Imm32(0.5f)))));
}
void Translator::V_CVT_FLR_I32_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertFToI(32, true, ir.FPFloor(src0)));
}
void Translator::V_CVT_OFF_F32_I4(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
ASSERT(src0.IsImmediate());
static constexpr std::array IntToFloat = {
0.0f, 0.0625f, 0.1250f, 0.1875f, 0.2500f, 0.3125f, 0.3750f, 0.4375f,
-0.5000f, -0.4375f, -0.3750f, -0.3125f, -0.2500f, -0.1875f, -0.1250f, -0.0625f};
SetDst(inst.dst[0], ir.Imm32(IntToFloat[src0.U32() & 0xF]));
}
void Translator::V_CVT_F32_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
SetDst(inst.dst[0], ir.FPConvert(32, src0));
}
void Translator::V_CVT_F64_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst64(inst.dst[0], ir.FPConvert(64, src0));
}
void Translator::V_CVT_F32_UBYTE(u32 index, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 byte = ir.BitFieldExtract(src0, ir.Imm32(8 * index), ir.Imm32(8));
SetDst(inst.dst[0], ir.ConvertUToF(32, 32, byte));
}
void Translator::V_FRACT_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPFract(src0));
}
void Translator::V_TRUNC_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPTrunc(src0));
}
void Translator::V_CEIL_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPCeil(src0));
}
void Translator::V_RNDNE_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPRoundEven(src0));
}
void Translator::V_FLOOR_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPFloor(src0));
}
void Translator::V_EXP_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPExp2(src0));
}
void Translator::V_LOG_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPLog2(src0));
}
void Translator::V_RCP_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPRecip(src0));
}
void Translator::V_RCP_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
SetDst64(inst.dst[0], ir.FPRecip(src0));
}
void Translator::V_RSQ_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPRecipSqrt(src0));
}
void Translator::V_SQRT_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPSqrt(src0));
}
void Translator::V_SIN_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPSin(src0));
}
void Translator::V_COS_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPCos(src0));
}
void Translator::V_NOT_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.BitwiseNot(src0));
}
void Translator::V_BFREV_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.BitReverse(src0));
}
void Translator::V_FFBH_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
// Gcn wants the MSB position counting from the left, but SPIR-V counts from the rightmost (LSB)
// position
const IR::U32 msb_pos = ir.FindUMsb(src0);
const IR::U32 pos_from_left = ir.ISub(ir.Imm32(31), msb_pos);
// Select 0xFFFFFFFF if src0 was 0
const IR::U1 cond = ir.INotEqual(src0, ir.Imm32(0));
SetDst(inst.dst[0], IR::U32{ir.Select(cond, pos_from_left, ir.Imm32(~0U))});
}
void Translator::V_FFBL_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.FindILsb(src0));
}
void Translator::V_FREXP_EXP_I32_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
SetDst(inst.dst[0], ir.FPFrexpExp(src0));
}
void Translator::V_FREXP_MANT_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
SetDst64(inst.dst[0], ir.FPFrexpSig(src0));
}
void Translator::V_FRACT_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
SetDst64(inst.dst[0], ir.FPFract(src0));
}
void Translator::V_FREXP_EXP_I32_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPFrexpExp(src0));
}
void Translator::V_FREXP_MANT_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPFrexpSig(src0));
}
void Translator::V_MOVRELD_B32(const GcnInst& inst) {
const IR::U32 src_val{GetSrc(inst.src[0])};
u32 dst_vgprno = inst.dst[0].code - static_cast<u32>(IR::VectorReg::V0);
IR::U32 m0 = ir.GetM0();
VMovRelDHelper(dst_vgprno, src_val, m0);
}
void Translator::V_MOVRELS_B32(const GcnInst& inst) {
u32 src_vgprno = inst.src[0].code - static_cast<u32>(IR::VectorReg::V0);
const IR::U32 m0 = ir.GetM0();
const IR::U32 src_val = VMovRelSHelper(src_vgprno, m0);
SetDst(inst.dst[0], src_val);
}
void Translator::V_MOVRELSD_B32(const GcnInst& inst) {
u32 src_vgprno = inst.src[0].code - static_cast<u32>(IR::VectorReg::V0);
u32 dst_vgprno = inst.dst[0].code - static_cast<u32>(IR::VectorReg::V0);
IR::U32 m0 = ir.GetM0();
const IR::U32 src_val = VMovRelSHelper(src_vgprno, m0);
VMovRelDHelper(dst_vgprno, src_val, m0);
}
// VOPC
void Translator::V_CMP_F32(ConditionOp op, bool set_exec, const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::U1 result = [&] {
switch (op) {
case ConditionOp::F:
return ir.Imm1(false);
case ConditionOp::EQ:
return ir.FPEqual(src0, src1);
case ConditionOp::LG:
return ir.FPNotEqual(src0, src1);
case ConditionOp::GT:
return ir.FPGreaterThan(src0, src1);
case ConditionOp::LT:
return ir.FPLessThan(src0, src1);
case ConditionOp::LE:
return ir.FPLessThanEqual(src0, src1);
case ConditionOp::GE:
return ir.FPGreaterThanEqual(src0, src1);
case ConditionOp::U:
return ir.LogicalOr(ir.FPIsNan(src0), ir.FPIsNan(src1));
default:
UNREACHABLE();
}
}();
if (set_exec) {
ir.SetExec(result);
}
switch (inst.dst[1].field) {
case OperandField::VccLo:
ir.SetVcc(result);
break;
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[1].code), result);
break;
default:
UNREACHABLE();
}
}
void Translator::V_CMP_U32(ConditionOp op, bool is_signed, bool set_exec, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U1 result = [&] {
switch (op) {
case ConditionOp::F:
return ir.Imm1(false);
case ConditionOp::TRU:
return ir.Imm1(true);
case ConditionOp::EQ:
return ir.IEqual(src0, src1);
case ConditionOp::LG:
return ir.INotEqual(src0, src1);
case ConditionOp::GT:
return ir.IGreaterThan(src0, src1, is_signed);
case ConditionOp::LT:
return ir.ILessThan(src0, src1, is_signed);
case ConditionOp::LE:
return ir.ILessThanEqual(src0, src1, is_signed);
case ConditionOp::GE:
return ir.IGreaterThanEqual(src0, src1, is_signed);
default:
UNREACHABLE();
}
}();
if (set_exec) {
ir.SetExec(result);
}
switch (inst.dst[1].field) {
case OperandField::VccLo:
return ir.SetVcc(result);
case OperandField::ScalarGPR:
return ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), result);
default:
UNREACHABLE();
}
}
void Translator::V_CMP_NE_U64(const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
case OperandField::ConstZero:
return ir.Imm1(false);
default:
UNREACHABLE();
}
};
const IR::U1 src0{get_src(inst.src[0])};
ASSERT(inst.src[1].field == OperandField::ConstZero); // src0 != 0
switch (inst.dst[1].field) {
case OperandField::VccLo:
ir.SetVcc(src0);
break;
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[1].code), src0);
break;
default:
UNREACHABLE();
}
}
void Translator::V_CMP_CLASS_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
IR::U1 value;
if (src1.IsImmediate()) {
const auto class_mask = static_cast<IR::FloatClassFunc>(src1.U32());
if ((class_mask & IR::FloatClassFunc::NaN) == IR::FloatClassFunc::NaN) {
value = ir.FPIsNan(src0);
} else if ((class_mask & IR::FloatClassFunc::Infinity) == IR::FloatClassFunc::Infinity) {
value = ir.FPIsInf(src0);
} else {
UNREACHABLE();
}
} else {
// We don't know the type yet, delay its resolution.
value = ir.FPCmpClass32(src0, src1);
}
switch (inst.dst[1].field) {
case OperandField::VccLo:
return ir.SetVcc(value);
case OperandField::ScalarGPR:
return ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[1].code), value);
default:
UNREACHABLE();
}
}
// VOP3a
void Translator::V_MAD_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPFma(src0, src1, src2));
}
void Translator::V_MAD_I32_I24(const GcnInst& inst, bool is_signed) {
const IR::U32 src0{
ir.BitFieldExtract(GetSrc(inst.src[0]), ir.Imm32(0), ir.Imm32(24), is_signed)};
const IR::U32 src1{
ir.BitFieldExtract(GetSrc(inst.src[1]), ir.Imm32(0), ir.Imm32(24), is_signed)};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0], ir.IAdd(ir.IMul(src0, src1), src2));
}
void Translator::V_MAD_U32_U24(const GcnInst& inst) {
V_MAD_I32_I24(inst, false);
}
IR::F32 Translator::SelectCubeResult(const IR::F32& x, const IR::F32& y, const IR::F32& z,
const IR::F32& x_res, const IR::F32& y_res,
const IR::F32& z_res) {
const auto abs_x = ir.FPAbs(x);
const auto abs_y = ir.FPAbs(y);
const auto abs_z = ir.FPAbs(z);
const auto z_face_cond{
ir.LogicalAnd(ir.FPGreaterThanEqual(abs_z, abs_x), ir.FPGreaterThanEqual(abs_z, abs_y))};
const auto y_face_cond{ir.FPGreaterThanEqual(abs_y, abs_x)};
return IR::F32{ir.Select(z_face_cond, z_res, ir.Select(y_face_cond, y_res, x_res))};
}
void Translator::V_CUBEID_F32(const GcnInst& inst) {
const auto x = GetSrc<IR::F32>(inst.src[0]);
const auto y = GetSrc<IR::F32>(inst.src[1]);
const auto z = GetSrc<IR::F32>(inst.src[2]);
IR::F32 result;
if (profile.supports_native_cube_calc) {
result = ir.CubeFaceIndex(ir.CompositeConstruct(x, y, z));
} else {
const auto x_neg_cond{ir.FPLessThan(x, ir.Imm32(0.f))};
const auto y_neg_cond{ir.FPLessThan(y, ir.Imm32(0.f))};
const auto z_neg_cond{ir.FPLessThan(z, ir.Imm32(0.f))};
const IR::F32 x_face{ir.Select(x_neg_cond, ir.Imm32(1.f), ir.Imm32(0.f))};
const IR::F32 y_face{ir.Select(y_neg_cond, ir.Imm32(3.f), ir.Imm32(2.f))};
const IR::F32 z_face{ir.Select(z_neg_cond, ir.Imm32(5.f), ir.Imm32(4.f))};
result = SelectCubeResult(x, y, z, x_face, y_face, z_face);
}
SetDst(inst.dst[0], result);
}
void Translator::V_CUBESC_F32(const GcnInst& inst) {
const auto x = GetSrc<IR::F32>(inst.src[0]);
const auto y = GetSrc<IR::F32>(inst.src[1]);
const auto z = GetSrc<IR::F32>(inst.src[2]);
const auto x_neg_cond{ir.FPLessThan(x, ir.Imm32(0.f))};
const auto z_neg_cond{ir.FPLessThan(z, ir.Imm32(0.f))};
const IR::F32 x_sc{ir.Select(x_neg_cond, z, ir.FPNeg(z))};
const IR::F32 y_sc{x};
const IR::F32 z_sc{ir.Select(z_neg_cond, ir.FPNeg(x), x)};
const auto result{SelectCubeResult(x, y, z, x_sc, y_sc, z_sc)};
SetDst(inst.dst[0], result);
}
void Translator::V_CUBETC_F32(const GcnInst& inst) {
const auto x = GetSrc<IR::F32>(inst.src[0]);
const auto y = GetSrc<IR::F32>(inst.src[1]);
const auto z = GetSrc<IR::F32>(inst.src[2]);
const auto y_neg_cond{ir.FPLessThan(y, ir.Imm32(0.f))};
const IR::F32 x_z_tc{ir.FPNeg(y)};
const IR::F32 y_tc{ir.Select(y_neg_cond, ir.FPNeg(z), z)};
const auto result{SelectCubeResult(x, y, z, x_z_tc, y_tc, x_z_tc)};
SetDst(inst.dst[0], result);
}
void Translator::V_CUBEMA_F32(const GcnInst& inst) {
const auto x = GetSrc<IR::F32>(inst.src[0]);
const auto y = GetSrc<IR::F32>(inst.src[1]);
const auto z = GetSrc<IR::F32>(inst.src[2]);
const auto two{ir.Imm32(2.f)};
const IR::F32 x_major_axis{ir.FPMul(x, two)};
const IR::F32 y_major_axis{ir.FPMul(y, two)};
const IR::F32 z_major_axis{ir.FPMul(z, two)};
const auto result{SelectCubeResult(x, y, z, x_major_axis, y_major_axis, z_major_axis)};
SetDst(inst.dst[0], result);
}
void Translator::V_BFE_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
IR::U32 src1{GetSrc(inst.src[1])};
IR::U32 src2{GetSrc(inst.src[2])};
if (!src1.IsImmediate()) {
src1 = ir.BitwiseAnd(src1, ir.Imm32(0x1F));
}
if (!src2.IsImmediate()) {
src2 = ir.BitwiseAnd(src2, ir.Imm32(0x1F));
}
SetDst(inst.dst[0], ir.BitFieldExtract(src0, src1, src2, is_signed));
}
void Translator::V_BFI_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0],
ir.BitwiseOr(ir.BitwiseAnd(src0, src1), ir.BitwiseAnd(ir.BitwiseNot(src0), src2)));
}
void Translator::V_FMA_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPFma(src0, src1, src2));
}
void Translator::V_FMA_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
const IR::F64 src1{GetSrc64<IR::F64>(inst.src[1])};
const IR::F64 src2{GetSrc64<IR::F64>(inst.src[2])};
SetDst64(inst.dst[0], ir.FPFma(src0, src1, src2));
}
void Translator::V_MIN3_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPMin(src0, ir.FPMin(src1, src2)));
}
void Translator::V_MIN3_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0], ir.SMin(src0, ir.SMin(src1, src2)));
}
void Translator::V_MIN3_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0], ir.UMin(src0, ir.UMin(src1, src2)));
}
void Translator::V_MAX3_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPMax(src0, ir.FPMax(src1, src2)));
}
void Translator::V_MAX3_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0], ir.IMax(src0, ir.IMax(src1, src2, is_signed), is_signed));
}
void Translator::V_MED3_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
const IR::F32 mmx = ir.FPMin(ir.FPMax(src0, src1), src2);
SetDst(inst.dst[0], ir.FPMax(ir.FPMin(src0, src1), mmx));
}
void Translator::V_MED3_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
const IR::U32 mmx = ir.SMin(ir.SMax(src0, src1), src2);
SetDst(inst.dst[0], ir.SMax(ir.SMin(src0, src1), mmx));
}
void Translator::V_MED3_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
const IR::U32 mmx = ir.UMin(ir.UMax(src0, src1), src2);
SetDst(inst.dst[0], ir.UMax(ir.UMin(src0, src1), mmx));
}
void Translator::V_SAD(const GcnInst& inst) {
const IR::U32 abs_diff = ir.IAbs(ir.ISub(GetSrc(inst.src[0]), GetSrc(inst.src[1])));
SetDst(inst.dst[0], ir.IAdd(abs_diff, GetSrc(inst.src[2])));
}
void Translator::V_SAD_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
IR::U32 result;
if (src0.IsImmediate() && src0.U32() == 0U) {
result = src1;
} else if (src1.IsImmediate() && src1.U32() == 0U) {
result = src0;
} else {
const IR::U32 max{ir.IMax(src0, src1, false)};
const IR::U32 min{ir.IMin(src0, src1, false)};
result = ir.ISub(max, min);
}
SetDst(inst.dst[0], ir.IAdd(result, src2));
}
void Translator::V_CVT_PK_U16_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 lo = ir.IMin(src0, ir.Imm32(0xFFFF), false);
const IR::U32 hi = ir.IMin(src1, ir.Imm32(0xFFFF), false);
SetDst(inst.dst[0], ir.BitFieldInsert(lo, hi, ir.Imm32(16), ir.Imm32(16)));
}
void Translator::V_CVT_PK_U8_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
const IR::U32 value_uint = ir.ConvertFToU(32, src0);
const IR::U32 offset = ir.ShiftLeftLogical(src1, ir.Imm32(3));
SetDst(inst.dst[0], ir.BitFieldInsert(src2, value_uint, offset, ir.Imm32(8)));
}
void Translator::V_LSHL_B64(const GcnInst& inst) {
const IR::U64 src0{GetSrc64(inst.src[0])};
const IR::U64 src1{GetSrc64(inst.src[1])};
const IR::VectorReg dst_reg{inst.dst[0].code};
if (src0.IsImmediate()) {
if (src0.U64() == -1) {
// If src0 is a fixed -1, the result will always be -1.
ir.SetVectorReg(dst_reg, ir.Imm32(0xFFFFFFFF));
ir.SetVectorReg(dst_reg + 1, ir.Imm32(0xFFFFFFFF));
return;
}
if (src1.IsImmediate()) {
// If both src0 and src1 are immediates, we can calculate the result now.
// Note that according to the manual, only bits 4:0 are used from src1.
const u64 result = src0.U64() << (src1.U64() & 0x1F);
ir.SetVectorReg(dst_reg, ir.Imm32(static_cast<u32>(result)));
ir.SetVectorReg(dst_reg + 1, ir.Imm32(static_cast<u32>(result >> 32)));
return;
}
const IR::U64 result = ir.ShiftLeftLogical(src0, ir.BitwiseAnd(src1, ir.Imm64(u64(0x3F))));
SetDst64(inst.dst[0], result);
return;
}
UNREACHABLE_MSG("Unimplemented V_LSHL_B64 arguments");
}
void Translator::V_MUL_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
const IR::F64 src1{GetSrc64<IR::F64>(inst.src[1])};
SetDst64(inst.dst[0], ir.FPMul(src0, src1));
}
void Translator::V_MAX_F64(const GcnInst& inst) {
const IR::F64 src0{GetSrc64<IR::F64>(inst.src[0])};
const IR::F64 src1{GetSrc64<IR::F64>(inst.src[1])};
SetDst64(inst.dst[0], ir.FPMax(src0, src1));
}
void Translator::V_MUL_LO_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IMul(src0, src1));
}
void Translator::V_MUL_HI_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 hi{ir.CompositeExtract(ir.IMulExt(src0, src1, is_signed), 1)};
SetDst(inst.dst[0], hi);
}
void Translator::V_MAD_U64_U32(const GcnInst& inst) {
const auto src0 = GetSrc<IR::U32>(inst.src[0]);
const auto src1 = GetSrc<IR::U32>(inst.src[1]);
const auto src2 = GetSrc64<IR::U64>(inst.src[2]);
// const IR::U64 mul_result = ir.UConvert(64, ir.IMul(src0, src1));
const IR::U64 mul_result =
ir.PackUint2x32(ir.CompositeConstruct(ir.IMul(src0, src1), ir.Imm32(0U)));
const IR::U64 sum_result = ir.IAdd(mul_result, src2);
SetDst64(inst.dst[0], sum_result);
const IR::U1 less_src0 = ir.ILessThan(sum_result, mul_result, false);
const IR::U1 less_src1 = ir.ILessThan(sum_result, src2, false);
const IR::U1 did_overflow = ir.LogicalOr(less_src0, less_src1);
ir.SetVcc(did_overflow);
}
IR::U32 Translator::GetCarryIn(const GcnInst& inst) {
IR::U1 carry;
if (inst.src_count == 3) { // VOP3
if (inst.src[2].field == OperandField::VccLo) {
carry = ir.GetVcc();
} else if (inst.src[2].field == OperandField::ScalarGPR) {
carry = ir.GetThreadBitScalarReg(IR::ScalarReg(inst.src[2].code));
} else {
UNREACHABLE();
}
} else { // VOP2
carry = ir.GetVcc();
}
return IR::U32{ir.Select(carry, ir.Imm32(1), ir.Imm32(0))};
}
void Translator::SetCarryOut(const GcnInst& inst, const IR::U1& carry) {
if (inst.dst_count == 2) { // VOP3
if (inst.dst[1].field == OperandField::VccLo) {
ir.SetVcc(carry);
} else if (inst.dst[1].field == OperandField::ScalarGPR) {
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[1].code), carry);
} else {
UNREACHABLE();
}
} else { // VOP2
ir.SetVcc(carry);
}
}
// TODO: add range analysis pass to hopefully put an upper bound on m0, and only select one of
// [src_vgprno, src_vgprno + max_m0]. Same for dst regs we may write back to
IR::U32 Translator::VMovRelSHelper(u32 src_vgprno, const IR::U32 m0) {
// Read from VGPR0 by default when src_vgprno + m0 > num_allocated_vgprs
IR::U32 src_val = ir.GetVectorReg<IR::U32>(IR::VectorReg::V0);
for (u32 i = src_vgprno; i < runtime_info.num_allocated_vgprs; i++) {
const IR::U1 cond = ir.IEqual(m0, ir.Imm32(i - src_vgprno));
src_val =
IR::U32{ir.Select(cond, ir.GetVectorReg<IR::U32>(IR::VectorReg::V0 + i), src_val)};
}
return src_val;
}
void Translator::VMovRelDHelper(u32 dst_vgprno, const IR::U32 src_val, const IR::U32 m0) {
for (u32 i = dst_vgprno; i < runtime_info.num_allocated_vgprs; i++) {
const IR::U1 cond = ir.IEqual(m0, ir.Imm32(i - dst_vgprno));
const IR::U32 dst_val =
IR::U32{ir.Select(cond, src_val, ir.GetVectorReg<IR::U32>(IR::VectorReg::V0 + i))};
ir.SetVectorReg(IR::VectorReg::V0 + i, dst_val);
}
}
} // namespace Shader::Gcn