shadPS4/src/shader_recompiler/backend/spirv/spirv_emit_context.cpp
TheTurtle 9e618c0e0c
video_core: Add multipler to handle special cases of texture buffer stride mismatch (#1640)
* page_manager: Enable userfaultfd by default

* Much faster than page faults and causes less problems

* shader_recompiler: Add texel buffer multiplier

* Fixes format mismatch assert when vsharp stride is multiple of format stride

* shader_recompiler: Specialize UBOs on size

* Some games can perform manual vertex pulling and thus bind read only buffers of varying size. We only recompile when the vsharp size is larger than size in shader, in opposite case its not needed

* clang format
2024-12-06 19:54:59 +02:00

739 lines
32 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h"
#include "common/div_ceil.h"
#include "shader_recompiler/backend/spirv/spirv_emit_context.h"
#include "shader_recompiler/frontend/fetch_shader.h"
#include "shader_recompiler/ir/passes/srt.h"
#include "video_core/amdgpu/types.h"
#include <boost/container/static_vector.hpp>
#include <fmt/format.h>
#include <numbers>
#include <string_view>
namespace Shader::Backend::SPIRV {
namespace {
std::string_view StageName(Stage stage) {
switch (stage) {
case Stage::Vertex:
return "vs";
case Stage::Local:
return "ls";
case Stage::Export:
return "es";
case Stage::Hull:
return "hs";
case Stage::Geometry:
return "gs";
case Stage::Fragment:
return "fs";
case Stage::Compute:
return "cs";
}
throw InvalidArgument("Invalid stage {}", u32(stage));
}
static constexpr u32 NumVertices(AmdGpu::PrimitiveType type) {
switch (type) {
case AmdGpu::PrimitiveType::PointList:
return 1u;
case AmdGpu::PrimitiveType::LineList:
return 2u;
case AmdGpu::PrimitiveType::TriangleList:
case AmdGpu::PrimitiveType::TriangleStrip:
return 3u;
case AmdGpu::PrimitiveType::AdjTriangleList:
return 6u;
default:
UNREACHABLE();
}
}
template <typename... Args>
void Name(EmitContext& ctx, Id object, std::string_view format_str, Args&&... args) {
ctx.Name(object, fmt::format(fmt::runtime(format_str), StageName(ctx.stage),
std::forward<Args>(args)...)
.c_str());
}
} // Anonymous namespace
EmitContext::EmitContext(const Profile& profile_, const RuntimeInfo& runtime_info_,
const Info& info_, Bindings& binding_)
: Sirit::Module(profile_.supported_spirv), info{info_}, runtime_info{runtime_info_},
profile{profile_}, stage{info.stage}, binding{binding_} {
AddCapability(spv::Capability::Shader);
DefineArithmeticTypes();
DefineInterfaces();
DefineBuffers();
DefineTextureBuffers();
DefineImagesAndSamplers();
DefineSharedMemory();
}
EmitContext::~EmitContext() = default;
Id EmitContext::Def(const IR::Value& value) {
if (!value.IsImmediate()) {
return value.InstRecursive()->Definition<Id>();
}
switch (value.Type()) {
case IR::Type::Void:
return Id{};
case IR::Type::U1:
return value.U1() ? true_value : false_value;
case IR::Type::U32:
return ConstU32(value.U32());
case IR::Type::U64:
return Constant(U64, value.U64());
case IR::Type::F32:
return ConstF32(value.F32());
case IR::Type::F64:
return Constant(F64[1], value.F64());
case IR::Type::StringLiteral:
return String(value.StringLiteral());
default:
throw NotImplementedException("Immediate type {}", value.Type());
}
}
void EmitContext::DefineArithmeticTypes() {
void_id = Name(TypeVoid(), "void_id");
U1[1] = Name(TypeBool(), "bool_id");
if (info.uses_fp16) {
F16[1] = Name(TypeFloat(16), "f16_id");
U16 = Name(TypeUInt(16), "u16_id");
}
if (info.uses_fp64) {
F64[1] = Name(TypeFloat(64), "f64_id");
}
F32[1] = Name(TypeFloat(32), "f32_id");
S32[1] = Name(TypeSInt(32), "i32_id");
U32[1] = Name(TypeUInt(32), "u32_id");
U64 = Name(TypeUInt(64), "u64_id");
for (u32 i = 2; i <= 4; i++) {
if (info.uses_fp16) {
F16[i] = Name(TypeVector(F16[1], i), fmt::format("f16vec{}_id", i));
}
if (info.uses_fp64) {
F64[i] = Name(TypeVector(F64[1], i), fmt::format("f64vec{}_id", i));
}
F32[i] = Name(TypeVector(F32[1], i), fmt::format("f32vec{}_id", i));
S32[i] = Name(TypeVector(S32[1], i), fmt::format("i32vec{}_id", i));
U32[i] = Name(TypeVector(U32[1], i), fmt::format("u32vec{}_id", i));
U1[i] = Name(TypeVector(U1[1], i), fmt::format("bvec{}_id", i));
}
true_value = ConstantTrue(U1[1]);
false_value = ConstantFalse(U1[1]);
u32_one_value = ConstU32(1U);
u32_zero_value = ConstU32(0U);
f32_zero_value = ConstF32(0.0f);
pi_x2 = ConstF32(2.0f * float{std::numbers::pi});
input_f32 = Name(TypePointer(spv::StorageClass::Input, F32[1]), "input_f32");
input_u32 = Name(TypePointer(spv::StorageClass::Input, U32[1]), "input_u32");
input_s32 = Name(TypePointer(spv::StorageClass::Input, S32[1]), "input_s32");
output_f32 = Name(TypePointer(spv::StorageClass::Output, F32[1]), "output_f32");
output_u32 = Name(TypePointer(spv::StorageClass::Output, U32[1]), "output_u32");
output_s32 = Name(TypePointer(spv::StorageClass::Output, S32[1]), "output_s32");
full_result_i32x2 = Name(TypeStruct(S32[1], S32[1]), "full_result_i32x2");
full_result_u32x2 = Name(TypeStruct(U32[1], U32[1]), "full_result_u32x2");
}
void EmitContext::DefineInterfaces() {
DefinePushDataBlock();
DefineInputs();
DefineOutputs();
}
const VectorIds& GetAttributeType(EmitContext& ctx, AmdGpu::NumberFormat fmt) {
switch (GetNumberClass(fmt)) {
case AmdGpu::NumberClass::Float:
return ctx.F32;
case AmdGpu::NumberClass::Sint:
return ctx.S32;
case AmdGpu::NumberClass::Uint:
return ctx.U32;
default:
break;
}
UNREACHABLE_MSG("Invalid attribute type {}", fmt);
}
EmitContext::SpirvAttribute EmitContext::GetAttributeInfo(AmdGpu::NumberFormat fmt, Id id,
u32 num_components, bool output) {
switch (GetNumberClass(fmt)) {
case AmdGpu::NumberClass::Float:
return {id, output ? output_f32 : input_f32, F32[1], num_components, false};
case AmdGpu::NumberClass::Uint:
return {id, output ? output_u32 : input_u32, U32[1], num_components, true};
case AmdGpu::NumberClass::Sint:
return {id, output ? output_s32 : input_s32, S32[1], num_components, true};
default:
break;
}
UNREACHABLE_MSG("Invalid attribute type {}", fmt);
}
void EmitContext::DefineBufferOffsets() {
for (BufferDefinition& buffer : buffers) {
const u32 binding = buffer.binding;
const u32 half = PushData::BufOffsetIndex + (binding >> 4);
const u32 comp = (binding & 0xf) >> 2;
const u32 offset = (binding & 0x3) << 3;
const Id ptr{OpAccessChain(TypePointer(spv::StorageClass::PushConstant, U32[1]),
push_data_block, ConstU32(half), ConstU32(comp))};
const Id value{OpLoad(U32[1], ptr)};
buffer.offset = OpBitFieldUExtract(U32[1], value, ConstU32(offset), ConstU32(8U));
Name(buffer.offset, fmt::format("buf{}_off", binding));
buffer.offset_dwords = OpShiftRightLogical(U32[1], buffer.offset, ConstU32(2U));
Name(buffer.offset_dwords, fmt::format("buf{}_dword_off", binding));
}
for (TextureBufferDefinition& tex_buffer : texture_buffers) {
const u32 binding = tex_buffer.binding;
const u32 half = PushData::BufOffsetIndex + (binding >> 4);
const u32 comp = (binding & 0xf) >> 2;
const u32 offset = (binding & 0x3) << 3;
const Id ptr{OpAccessChain(TypePointer(spv::StorageClass::PushConstant, U32[1]),
push_data_block, ConstU32(half), ConstU32(comp))};
const Id value{OpLoad(U32[1], ptr)};
tex_buffer.coord_offset = OpBitFieldUExtract(U32[1], value, ConstU32(offset), ConstU32(6U));
tex_buffer.coord_shift =
OpBitFieldUExtract(U32[1], value, ConstU32(offset + 6U), ConstU32(2U));
Name(tex_buffer.coord_offset, fmt::format("texbuf{}_off", binding));
}
}
void EmitContext::DefineInterpolatedAttribs() {
if (!profile.needs_manual_interpolation) {
return;
}
// Iterate all input attributes, load them and manually interpolate with barycentric
// coordinates.
for (s32 i = 0; i < runtime_info.fs_info.num_inputs; i++) {
const auto& input = runtime_info.fs_info.inputs[i];
const u32 semantic = input.param_index;
auto& params = input_params[semantic];
if (input.is_flat || params.is_loaded) {
continue;
}
const Id p_array{OpLoad(TypeArray(F32[4], ConstU32(3U)), params.id)};
const Id p0{OpCompositeExtract(F32[4], p_array, 0U)};
const Id p1{OpCompositeExtract(F32[4], p_array, 1U)};
const Id p2{OpCompositeExtract(F32[4], p_array, 2U)};
const Id p10{OpFSub(F32[4], p1, p0)};
const Id p20{OpFSub(F32[4], p2, p0)};
const Id bary_coord{OpLoad(F32[3], gl_bary_coord_id)};
const Id bary_coord_y{OpCompositeExtract(F32[1], bary_coord, 1)};
const Id bary_coord_z{OpCompositeExtract(F32[1], bary_coord, 2)};
const Id p10_y{OpVectorTimesScalar(F32[4], p10, bary_coord_y)};
const Id p20_z{OpVectorTimesScalar(F32[4], p20, bary_coord_z)};
params.id = OpFAdd(F32[4], p0, OpFAdd(F32[4], p10_y, p20_z));
Name(params.id, fmt::format("fs_in_attr{}", semantic));
params.is_loaded = true;
}
}
Id MakeDefaultValue(EmitContext& ctx, u32 default_value) {
switch (default_value) {
case 0:
return ctx.ConstF32(0.f, 0.f, 0.f, 0.f);
case 1:
return ctx.ConstF32(0.f, 0.f, 0.f, 1.f);
case 2:
return ctx.ConstF32(1.f, 1.f, 1.f, 0.f);
case 3:
return ctx.ConstF32(1.f, 1.f, 1.f, 1.f);
default:
UNREACHABLE();
}
}
void EmitContext::DefineInputs() {
if (info.uses_lane_id) {
subgroup_local_invocation_id = DefineVariable(
U32[1], spv::BuiltIn::SubgroupLocalInvocationId, spv::StorageClass::Input);
Decorate(subgroup_local_invocation_id, spv::Decoration::Flat);
}
switch (stage) {
case Stage::Export:
case Stage::Vertex: {
vertex_index = DefineVariable(U32[1], spv::BuiltIn::VertexIndex, spv::StorageClass::Input);
base_vertex = DefineVariable(U32[1], spv::BuiltIn::BaseVertex, spv::StorageClass::Input);
instance_id = DefineVariable(U32[1], spv::BuiltIn::InstanceIndex, spv::StorageClass::Input);
const auto fetch_shader = Gcn::ParseFetchShader(info);
if (!fetch_shader) {
break;
}
for (const auto& attrib : fetch_shader->attributes) {
ASSERT(attrib.semantic < IR::NumParams);
const auto sharp = attrib.GetSharp(info);
const Id type{GetAttributeType(*this, sharp.GetNumberFmt())[4]};
if (attrib.UsesStepRates()) {
const u32 rate_idx =
attrib.GetStepRate() == Gcn::VertexAttribute::InstanceIdType::OverStepRate0 ? 0
: 1;
const u32 num_components = AmdGpu::NumComponents(sharp.GetDataFmt());
const auto buffer =
std::ranges::find_if(info.buffers, [&attrib](const auto& buffer) {
return buffer.instance_attrib == attrib.semantic;
});
// Note that we pass index rather than Id
input_params[attrib.semantic] = SpirvAttribute{
.id = rate_idx,
.pointer_type = input_u32,
.component_type = U32[1],
.num_components = std::min<u16>(attrib.num_elements, num_components),
.is_integer = true,
.is_loaded = false,
.buffer_handle = int(buffer - info.buffers.begin()),
};
} else {
Id id{DefineInput(type, attrib.semantic)};
if (attrib.GetStepRate() == Gcn::VertexAttribute::InstanceIdType::Plain) {
Name(id, fmt::format("vs_instance_attr{}", attrib.semantic));
} else {
Name(id, fmt::format("vs_in_attr{}", attrib.semantic));
}
input_params[attrib.semantic] =
GetAttributeInfo(sharp.GetNumberFmt(), id, 4, false);
interfaces.push_back(id);
}
}
break;
}
case Stage::Fragment:
frag_coord = DefineVariable(F32[4], spv::BuiltIn::FragCoord, spv::StorageClass::Input);
frag_depth = DefineVariable(F32[1], spv::BuiltIn::FragDepth, spv::StorageClass::Output);
front_facing = DefineVariable(U1[1], spv::BuiltIn::FrontFacing, spv::StorageClass::Input);
if (profile.needs_manual_interpolation) {
gl_bary_coord_id =
DefineVariable(F32[3], spv::BuiltIn::BaryCoordKHR, spv::StorageClass::Input);
}
for (s32 i = 0; i < runtime_info.fs_info.num_inputs; i++) {
const auto& input = runtime_info.fs_info.inputs[i];
const u32 semantic = input.param_index;
ASSERT(semantic < IR::NumParams);
if (input.is_default && !input.is_flat) {
input_params[semantic] = {
MakeDefaultValue(*this, input.default_value), input_f32, F32[1], 4, false, true,
};
continue;
}
const IR::Attribute param{IR::Attribute::Param0 + input.param_index};
const u32 num_components = info.loads.NumComponents(param);
const Id type{F32[num_components]};
Id attr_id{};
if (profile.needs_manual_interpolation && !input.is_flat) {
attr_id = DefineInput(TypeArray(type, ConstU32(3U)), semantic);
Decorate(attr_id, spv::Decoration::PerVertexKHR);
Name(attr_id, fmt::format("fs_in_attr{}_p", semantic));
} else {
attr_id = DefineInput(type, semantic);
Name(attr_id, fmt::format("fs_in_attr{}", semantic));
}
if (input.is_flat) {
Decorate(attr_id, spv::Decoration::Flat);
}
input_params[semantic] =
GetAttributeInfo(AmdGpu::NumberFormat::Float, attr_id, num_components, false);
interfaces.push_back(attr_id);
}
break;
case Stage::Compute:
workgroup_id = DefineVariable(U32[3], spv::BuiltIn::WorkgroupId, spv::StorageClass::Input);
local_invocation_id =
DefineVariable(U32[3], spv::BuiltIn::LocalInvocationId, spv::StorageClass::Input);
break;
case Stage::Geometry: {
primitive_id = DefineVariable(U32[1], spv::BuiltIn::PrimitiveId, spv::StorageClass::Input);
const auto gl_per_vertex =
Name(TypeStruct(TypeVector(F32[1], 4), F32[1], TypeArray(F32[1], ConstU32(1u))),
"gl_PerVertex");
MemberName(gl_per_vertex, 0, "gl_Position");
MemberName(gl_per_vertex, 1, "gl_PointSize");
MemberName(gl_per_vertex, 2, "gl_ClipDistance");
MemberDecorate(gl_per_vertex, 0, spv::Decoration::BuiltIn,
static_cast<std::uint32_t>(spv::BuiltIn::Position));
MemberDecorate(gl_per_vertex, 1, spv::Decoration::BuiltIn,
static_cast<std::uint32_t>(spv::BuiltIn::PointSize));
MemberDecorate(gl_per_vertex, 2, spv::Decoration::BuiltIn,
static_cast<std::uint32_t>(spv::BuiltIn::ClipDistance));
Decorate(gl_per_vertex, spv::Decoration::Block);
const auto num_verts_in = NumVertices(runtime_info.gs_info.in_primitive);
const auto vertices_in = TypeArray(gl_per_vertex, ConstU32(num_verts_in));
gl_in = Name(DefineVar(vertices_in, spv::StorageClass::Input), "gl_in");
interfaces.push_back(gl_in);
const auto num_params = runtime_info.gs_info.in_vertex_data_size / 4 - 1u;
for (int param_id = 0; param_id < num_params; ++param_id) {
const Id type{TypeArray(F32[4], ConstU32(num_verts_in))};
const Id id{DefineInput(type, param_id)};
Name(id, fmt::format("in_attr{}", param_id));
input_params[param_id] = {id, input_f32, F32[1], 4};
interfaces.push_back(id);
}
break;
}
default:
break;
}
}
void EmitContext::DefineOutputs() {
switch (stage) {
case Stage::Export:
case Stage::Vertex: {
output_position = DefineVariable(F32[4], spv::BuiltIn::Position, spv::StorageClass::Output);
const bool has_extra_pos_stores = info.stores.Get(IR::Attribute::Position1) ||
info.stores.Get(IR::Attribute::Position2) ||
info.stores.Get(IR::Attribute::Position3);
if (has_extra_pos_stores) {
const Id type{TypeArray(F32[1], ConstU32(8U))};
clip_distances =
DefineVariable(type, spv::BuiltIn::ClipDistance, spv::StorageClass::Output);
cull_distances =
DefineVariable(type, spv::BuiltIn::CullDistance, spv::StorageClass::Output);
}
for (u32 i = 0; i < IR::NumParams; i++) {
const IR::Attribute param{IR::Attribute::Param0 + i};
if (!info.stores.GetAny(param)) {
continue;
}
const u32 num_components = info.stores.NumComponents(param);
const Id id{DefineOutput(F32[num_components], i)};
Name(id, fmt::format("out_attr{}", i));
output_params[i] =
GetAttributeInfo(AmdGpu::NumberFormat::Float, id, num_components, true);
interfaces.push_back(id);
}
break;
}
case Stage::Fragment:
for (u32 i = 0; i < IR::NumRenderTargets; i++) {
const IR::Attribute mrt{IR::Attribute::RenderTarget0 + i};
if (!info.stores.GetAny(mrt)) {
continue;
}
const u32 num_components = info.stores.NumComponents(mrt);
const AmdGpu::NumberFormat num_format{runtime_info.fs_info.color_buffers[i].num_format};
const Id type{GetAttributeType(*this, num_format)[num_components]};
const Id id{DefineOutput(type, i)};
Name(id, fmt::format("frag_color{}", i));
frag_outputs[i] = GetAttributeInfo(num_format, id, num_components, true);
interfaces.push_back(id);
}
break;
case Stage::Geometry: {
output_position = DefineVariable(F32[4], spv::BuiltIn::Position, spv::StorageClass::Output);
for (u32 attr_id = 0; attr_id < info.gs_copy_data.num_attrs; attr_id++) {
const Id id{DefineOutput(F32[4], attr_id)};
Name(id, fmt::format("out_attr{}", attr_id));
output_params[attr_id] = {id, output_f32, F32[1], 4u};
interfaces.push_back(id);
}
break;
}
default:
break;
}
}
void EmitContext::DefinePushDataBlock() {
// Create push constants block for instance steps rates
const Id struct_type{Name(
TypeStruct(U32[1], U32[1], U32[4], U32[4], U32[4], U32[4], U32[4], U32[4]), "AuxData")};
Decorate(struct_type, spv::Decoration::Block);
MemberName(struct_type, 0, "sr0");
MemberName(struct_type, 1, "sr1");
MemberName(struct_type, 2, "buf_offsets0");
MemberName(struct_type, 3, "buf_offsets1");
MemberName(struct_type, 4, "ud_regs0");
MemberName(struct_type, 5, "ud_regs1");
MemberName(struct_type, 6, "ud_regs2");
MemberName(struct_type, 7, "ud_regs3");
MemberDecorate(struct_type, 0, spv::Decoration::Offset, 0U);
MemberDecorate(struct_type, 1, spv::Decoration::Offset, 4U);
MemberDecorate(struct_type, 2, spv::Decoration::Offset, 8U);
MemberDecorate(struct_type, 3, spv::Decoration::Offset, 24U);
MemberDecorate(struct_type, 4, spv::Decoration::Offset, 40U);
MemberDecorate(struct_type, 5, spv::Decoration::Offset, 56U);
MemberDecorate(struct_type, 6, spv::Decoration::Offset, 72U);
MemberDecorate(struct_type, 7, spv::Decoration::Offset, 88U);
push_data_block = DefineVar(struct_type, spv::StorageClass::PushConstant);
Name(push_data_block, "push_data");
interfaces.push_back(push_data_block);
}
void EmitContext::DefineBuffers() {
boost::container::small_vector<Id, 8> type_ids;
const auto define_struct = [&](Id record_array_type, bool is_instance_data,
std::optional<std::string_view> explicit_name = {}) {
const Id struct_type{TypeStruct(record_array_type)};
if (std::ranges::find(type_ids, record_array_type.value, &Id::value) != type_ids.end()) {
return struct_type;
}
Decorate(record_array_type, spv::Decoration::ArrayStride, 4);
auto name = is_instance_data ? fmt::format("{}_instance_data_f32", stage)
: fmt::format("{}_cbuf_block_f32", stage);
name = explicit_name.value_or(name);
Name(struct_type, name);
Decorate(struct_type, spv::Decoration::Block);
MemberName(struct_type, 0, "data");
MemberDecorate(struct_type, 0, spv::Decoration::Offset, 0U);
type_ids.push_back(record_array_type);
return struct_type;
};
if (info.has_readconst) {
const Id data_type = U32[1];
const auto storage_class = spv::StorageClass::Uniform;
const Id pointer_type = TypePointer(storage_class, data_type);
const Id record_array_type{
TypeArray(U32[1], ConstU32(static_cast<u32>(info.flattened_ud_buf.size())))};
const Id struct_type{define_struct(record_array_type, false, "srt_flatbuf_ty")};
const Id struct_pointer_type{TypePointer(storage_class, struct_type)};
const Id id{AddGlobalVariable(struct_pointer_type, storage_class)};
Decorate(id, spv::Decoration::Binding, binding.unified++);
Decorate(id, spv::Decoration::DescriptorSet, 0U);
Name(id, "srt_flatbuf_ubo");
srt_flatbuf = {
.id = id,
.binding = binding.buffer++,
.pointer_type = pointer_type,
};
interfaces.push_back(id);
}
for (const auto& desc : info.buffers) {
const auto sharp = desc.GetSharp(info);
const bool is_storage = desc.IsStorage(sharp);
const u32 array_size = sharp.NumDwords() != 0 ? sharp.NumDwords() : MaxUboDwords;
const auto* data_types = True(desc.used_types & IR::Type::F32) ? &F32 : &U32;
const Id data_type = (*data_types)[1];
const Id record_array_type{is_storage ? TypeRuntimeArray(data_type)
: TypeArray(data_type, ConstU32(array_size))};
const Id struct_type{define_struct(record_array_type, desc.is_instance_data)};
const auto storage_class =
is_storage ? spv::StorageClass::StorageBuffer : spv::StorageClass::Uniform;
const Id struct_pointer_type{TypePointer(storage_class, struct_type)};
const Id pointer_type = TypePointer(storage_class, data_type);
const Id id{AddGlobalVariable(struct_pointer_type, storage_class)};
Decorate(id, spv::Decoration::Binding, binding.unified++);
Decorate(id, spv::Decoration::DescriptorSet, 0U);
if (is_storage && !desc.is_written) {
Decorate(id, spv::Decoration::NonWritable);
}
Name(id, fmt::format("{}_{}", is_storage ? "ssbo" : "cbuf", desc.sharp_idx));
buffers.push_back({
.id = id,
.binding = binding.buffer++,
.data_types = data_types,
.pointer_type = pointer_type,
});
interfaces.push_back(id);
}
}
void EmitContext::DefineTextureBuffers() {
for (const auto& desc : info.texture_buffers) {
const auto sharp = desc.GetSharp(info);
const auto nfmt = sharp.GetNumberFmt();
const bool is_integer = AmdGpu::IsInteger(nfmt);
const VectorIds& sampled_type{GetAttributeType(*this, nfmt)};
const u32 sampled = desc.is_written ? 2 : 1;
const Id image_type{TypeImage(sampled_type[1], spv::Dim::Buffer, false, false, false,
sampled, spv::ImageFormat::Unknown)};
const Id pointer_type{TypePointer(spv::StorageClass::UniformConstant, image_type)};
const Id id{AddGlobalVariable(pointer_type, spv::StorageClass::UniformConstant)};
Decorate(id, spv::Decoration::Binding, binding.unified++);
Decorate(id, spv::Decoration::DescriptorSet, 0U);
Name(id, fmt::format("{}_{}", desc.is_written ? "imgbuf" : "texbuf", desc.sharp_idx));
texture_buffers.push_back({
.id = id,
.binding = binding.buffer++,
.image_type = image_type,
.result_type = sampled_type[4],
.is_integer = is_integer,
.is_storage = desc.is_written,
});
interfaces.push_back(id);
}
}
spv::ImageFormat GetFormat(const AmdGpu::Image& image) {
if (image.GetDataFmt() == AmdGpu::DataFormat::Format32 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Uint) {
return spv::ImageFormat::R32ui;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format32 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Float) {
return spv::ImageFormat::R32f;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format32_32 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Float) {
return spv::ImageFormat::Rg32f;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format32_32 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Uint) {
return spv::ImageFormat::Rg32ui;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format32_32_32_32 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Uint) {
return spv::ImageFormat::Rgba32ui;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format16 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Float) {
return spv::ImageFormat::R16f;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format16 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Uint) {
return spv::ImageFormat::R16ui;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format16_16 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Float) {
return spv::ImageFormat::Rg16f;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format16_16 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Snorm) {
return spv::ImageFormat::Rg16Snorm;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format8_8 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Unorm) {
return spv::ImageFormat::Rg8;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format16_16_16_16 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Float) {
return spv::ImageFormat::Rgba16f;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format16_16_16_16 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Unorm) {
return spv::ImageFormat::Rgba16;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format8 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Unorm) {
return spv::ImageFormat::R8;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format8_8_8_8 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Unorm) {
return spv::ImageFormat::Rgba8;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format8_8_8_8 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Uint) {
return spv::ImageFormat::Rgba8ui;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format10_11_11 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Float) {
return spv::ImageFormat::R11fG11fB10f;
}
if (image.GetDataFmt() == AmdGpu::DataFormat::Format32_32_32_32 &&
image.GetNumberFmt() == AmdGpu::NumberFormat::Float) {
return spv::ImageFormat::Rgba32f;
}
UNREACHABLE_MSG("Unknown storage format data_format={}, num_format={}", image.GetDataFmt(),
image.GetNumberFmt());
}
Id ImageType(EmitContext& ctx, const ImageResource& desc, Id sampled_type) {
const auto image = desc.GetSharp(ctx.info);
const auto format = desc.is_atomic ? GetFormat(image) : spv::ImageFormat::Unknown;
const auto type = image.GetBoundType();
const u32 sampled = desc.is_storage ? 2 : 1;
switch (type) {
case AmdGpu::ImageType::Color1D:
return ctx.TypeImage(sampled_type, spv::Dim::Dim1D, false, false, false, sampled, format);
case AmdGpu::ImageType::Color1DArray:
return ctx.TypeImage(sampled_type, spv::Dim::Dim1D, false, true, false, sampled, format);
case AmdGpu::ImageType::Color2D:
return ctx.TypeImage(sampled_type, spv::Dim::Dim2D, false, false, false, sampled, format);
case AmdGpu::ImageType::Color2DArray:
return ctx.TypeImage(sampled_type, spv::Dim::Dim2D, false, true, false, sampled, format);
case AmdGpu::ImageType::Color2DMsaa:
return ctx.TypeImage(sampled_type, spv::Dim::Dim2D, false, false, true, sampled, format);
case AmdGpu::ImageType::Color3D:
return ctx.TypeImage(sampled_type, spv::Dim::Dim3D, false, false, false, sampled, format);
case AmdGpu::ImageType::Cube:
return ctx.TypeImage(sampled_type, spv::Dim::Cube, false, desc.is_array, false, sampled,
format);
default:
break;
}
throw InvalidArgument("Invalid texture type {}", type);
}
void EmitContext::DefineImagesAndSamplers() {
for (const auto& image_desc : info.images) {
const auto sharp = image_desc.GetSharp(info);
const auto nfmt = sharp.GetNumberFmt();
const bool is_integer = AmdGpu::IsInteger(nfmt);
const VectorIds& data_types = GetAttributeType(*this, nfmt);
const Id sampled_type = data_types[1];
const Id image_type{ImageType(*this, image_desc, sampled_type)};
const Id pointer_type{TypePointer(spv::StorageClass::UniformConstant, image_type)};
const Id id{AddGlobalVariable(pointer_type, spv::StorageClass::UniformConstant)};
Decorate(id, spv::Decoration::Binding, binding.unified++);
Decorate(id, spv::Decoration::DescriptorSet, 0U);
Name(id, fmt::format("{}_{}{}", stage, "img", image_desc.sharp_idx));
images.push_back({
.data_types = &data_types,
.id = id,
.sampled_type = image_desc.is_storage ? sampled_type : TypeSampledImage(image_type),
.pointer_type = pointer_type,
.image_type = image_type,
.is_integer = is_integer,
.is_storage = image_desc.is_storage,
});
interfaces.push_back(id);
}
if (std::ranges::any_of(info.images, &ImageResource::is_atomic)) {
image_u32 = TypePointer(spv::StorageClass::Image, U32[1]);
}
if (info.samplers.empty()) {
return;
}
sampler_type = TypeSampler();
sampler_pointer_type = TypePointer(spv::StorageClass::UniformConstant, sampler_type);
for (const auto& samp_desc : info.samplers) {
const Id id{AddGlobalVariable(sampler_pointer_type, spv::StorageClass::UniformConstant)};
Decorate(id, spv::Decoration::Binding, binding.unified++);
Decorate(id, spv::Decoration::DescriptorSet, 0U);
Name(id, fmt::format("{}_{}{}", stage, "samp", samp_desc.sharp_idx));
samplers.push_back(id);
interfaces.push_back(id);
}
}
void EmitContext::DefineSharedMemory() {
static constexpr size_t DefaultSharedMemSize = 2_KB;
if (!info.uses_shared) {
return;
}
u32 shared_memory_size = runtime_info.cs_info.shared_memory_size;
if (shared_memory_size == 0) {
shared_memory_size = DefaultSharedMemSize;
}
const u32 num_elements{Common::DivCeil(shared_memory_size, 4U)};
const Id type{TypeArray(U32[1], ConstU32(num_elements))};
shared_memory_u32_type = TypePointer(spv::StorageClass::Workgroup, type);
shared_u32 = TypePointer(spv::StorageClass::Workgroup, U32[1]);
shared_memory_u32 = AddGlobalVariable(shared_memory_u32_type, spv::StorageClass::Workgroup);
interfaces.push_back(shared_memory_u32);
}
} // namespace Shader::Backend::SPIRV