Initial community commit
This commit is contained in:
parent
537bcbc862
commit
fc06254474
16440 changed files with 4239995 additions and 2 deletions
863
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/NSQ_del_dec_sse4_1.c
vendored
Normal file
863
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/NSQ_del_dec_sse4_1.c
vendored
Normal file
|
@ -0,0 +1,863 @@
|
|||
/* Copyright (c) 2014, Cisco Systems, INC
|
||||
Written by XiangMingZhu WeiZhou MinPeng YanWang
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#if defined(OPUS_X86_MAY_HAVE_SSE4_1) /* OpenMPT */
|
||||
|
||||
#include <xmmintrin.h>
|
||||
#include <emmintrin.h>
|
||||
#include <smmintrin.h>
|
||||
#include "main.h"
|
||||
#include "celt/x86/x86cpu.h"
|
||||
|
||||
#include "stack_alloc.h"
|
||||
|
||||
typedef struct {
|
||||
opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ];
|
||||
opus_int32 RandState[ DECISION_DELAY ];
|
||||
opus_int32 Q_Q10[ DECISION_DELAY ];
|
||||
opus_int32 Xq_Q14[ DECISION_DELAY ];
|
||||
opus_int32 Pred_Q15[ DECISION_DELAY ];
|
||||
opus_int32 Shape_Q14[ DECISION_DELAY ];
|
||||
opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ];
|
||||
opus_int32 LF_AR_Q14;
|
||||
opus_int32 Seed;
|
||||
opus_int32 SeedInit;
|
||||
opus_int32 RD_Q10;
|
||||
} NSQ_del_dec_struct;
|
||||
|
||||
typedef struct {
|
||||
opus_int32 Q_Q10;
|
||||
opus_int32 RD_Q10;
|
||||
opus_int32 xq_Q14;
|
||||
opus_int32 LF_AR_Q14;
|
||||
opus_int32 sLTP_shp_Q14;
|
||||
opus_int32 LPC_exc_Q14;
|
||||
} NSQ_sample_struct;
|
||||
|
||||
typedef NSQ_sample_struct NSQ_sample_pair[ 2 ];
|
||||
|
||||
static OPUS_INLINE void silk_nsq_del_dec_scale_states_sse4_1(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
||||
const opus_int32 x_Q3[], /* I Input in Q3 */
|
||||
opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
|
||||
const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
||||
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
||||
opus_int subfr, /* I Subframe number */
|
||||
opus_int nStatesDelayedDecision, /* I Number of del dec states */
|
||||
const opus_int LTP_scale_Q14, /* I LTP state scaling */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
||||
const opus_int signal_type, /* I Signal type */
|
||||
const opus_int decisionDelay /* I Decision delay */
|
||||
);
|
||||
|
||||
/******************************************/
|
||||
/* Noise shape quantizer for one subframe */
|
||||
/******************************************/
|
||||
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_sse4_1(
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
||||
opus_int signalType, /* I Signal type */
|
||||
const opus_int32 x_Q10[], /* I */
|
||||
opus_int8 pulses[], /* O */
|
||||
opus_int16 xq[], /* O */
|
||||
opus_int32 sLTP_Q15[], /* I/O LTP filter state */
|
||||
opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
|
||||
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
||||
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
||||
const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
||||
opus_int lag, /* I Pitch lag */
|
||||
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
||||
opus_int Tilt_Q14, /* I Spectral tilt */
|
||||
opus_int32 LF_shp_Q14, /* I */
|
||||
opus_int32 Gain_Q16, /* I */
|
||||
opus_int Lambda_Q10, /* I */
|
||||
opus_int offset_Q10, /* I */
|
||||
opus_int length, /* I Input length */
|
||||
opus_int subfr, /* I Subframe number */
|
||||
opus_int shapingLPCOrder, /* I Shaping LPC filter order */
|
||||
opus_int predictLPCOrder, /* I Prediction filter order */
|
||||
opus_int warping_Q16, /* I */
|
||||
opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
|
||||
opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */
|
||||
opus_int decisionDelay /* I */
|
||||
);
|
||||
|
||||
void silk_NSQ_del_dec_sse4_1(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
||||
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
||||
opus_int8 pulses[], /* O Quantized pulse signal */
|
||||
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
||||
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
||||
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
||||
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
||||
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
||||
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
||||
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
||||
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
||||
)
|
||||
{
|
||||
opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
|
||||
opus_int last_smple_idx, smpl_buf_idx, decisionDelay;
|
||||
const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
|
||||
opus_int16 *pxq;
|
||||
VARDECL( opus_int32, sLTP_Q15 );
|
||||
VARDECL( opus_int16, sLTP );
|
||||
opus_int32 HarmShapeFIRPacked_Q14;
|
||||
opus_int offset_Q10;
|
||||
opus_int32 RDmin_Q10, Gain_Q10;
|
||||
VARDECL( opus_int32, x_sc_Q10 );
|
||||
VARDECL( opus_int32, delayedGain_Q10 );
|
||||
VARDECL( NSQ_del_dec_struct, psDelDec );
|
||||
NSQ_del_dec_struct *psDD;
|
||||
SAVE_STACK;
|
||||
|
||||
/* Set unvoiced lag to the previous one, overwrite later for voiced */
|
||||
lag = NSQ->lagPrev;
|
||||
|
||||
silk_assert( NSQ->prev_gain_Q16 != 0 );
|
||||
|
||||
/* Initialize delayed decision states */
|
||||
ALLOC( psDelDec, psEncC->nStatesDelayedDecision, NSQ_del_dec_struct );
|
||||
silk_memset( psDelDec, 0, psEncC->nStatesDelayedDecision * sizeof( NSQ_del_dec_struct ) );
|
||||
for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) {
|
||||
psDD = &psDelDec[ k ];
|
||||
psDD->Seed = ( k + psIndices->Seed ) & 3;
|
||||
psDD->SeedInit = psDD->Seed;
|
||||
psDD->RD_Q10 = 0;
|
||||
psDD->LF_AR_Q14 = NSQ->sLF_AR_shp_Q14;
|
||||
psDD->Shape_Q14[ 0 ] = NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ];
|
||||
silk_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
||||
silk_memcpy( psDD->sAR2_Q14, NSQ->sAR2_Q14, sizeof( NSQ->sAR2_Q14 ) );
|
||||
}
|
||||
|
||||
offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
|
||||
smpl_buf_idx = 0; /* index of oldest samples */
|
||||
|
||||
decisionDelay = silk_min_int( DECISION_DELAY, psEncC->subfr_length );
|
||||
|
||||
/* For voiced frames limit the decision delay to lower than the pitch lag */
|
||||
if( psIndices->signalType == TYPE_VOICED ) {
|
||||
for( k = 0; k < psEncC->nb_subfr; k++ ) {
|
||||
decisionDelay = silk_min_int( decisionDelay, pitchL[ k ] - LTP_ORDER / 2 - 1 );
|
||||
}
|
||||
} else {
|
||||
if( lag > 0 ) {
|
||||
decisionDelay = silk_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 );
|
||||
}
|
||||
}
|
||||
|
||||
if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
|
||||
LSF_interpolation_flag = 0;
|
||||
} else {
|
||||
LSF_interpolation_flag = 1;
|
||||
}
|
||||
|
||||
ALLOC( sLTP_Q15,
|
||||
psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
|
||||
ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
|
||||
ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
|
||||
ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 );
|
||||
/* Set up pointers to start of sub frame */
|
||||
pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
|
||||
NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
|
||||
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
||||
subfr = 0;
|
||||
for( k = 0; k < psEncC->nb_subfr; k++ ) {
|
||||
A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ];
|
||||
B_Q14 = <PCoef_Q14[ k * LTP_ORDER ];
|
||||
AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ];
|
||||
|
||||
/* Noise shape parameters */
|
||||
silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
|
||||
HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
|
||||
HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
|
||||
|
||||
NSQ->rewhite_flag = 0;
|
||||
if( psIndices->signalType == TYPE_VOICED ) {
|
||||
/* Voiced */
|
||||
lag = pitchL[ k ];
|
||||
|
||||
/* Re-whitening */
|
||||
if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
|
||||
if( k == 2 ) {
|
||||
/* RESET DELAYED DECISIONS */
|
||||
/* Find winner */
|
||||
RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
|
||||
Winner_ind = 0;
|
||||
for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) {
|
||||
if( psDelDec[ i ].RD_Q10 < RDmin_Q10 ) {
|
||||
RDmin_Q10 = psDelDec[ i ].RD_Q10;
|
||||
Winner_ind = i;
|
||||
}
|
||||
}
|
||||
for( i = 0; i < psEncC->nStatesDelayedDecision; i++ ) {
|
||||
if( i != Winner_ind ) {
|
||||
psDelDec[ i ].RD_Q10 += ( silk_int32_MAX >> 4 );
|
||||
silk_assert( psDelDec[ i ].RD_Q10 >= 0 );
|
||||
}
|
||||
}
|
||||
|
||||
/* Copy final part of signals from winner state to output and long-term filter states */
|
||||
psDD = &psDelDec[ Winner_ind ];
|
||||
last_smple_idx = smpl_buf_idx + decisionDelay;
|
||||
for( i = 0; i < decisionDelay; i++ ) {
|
||||
last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY;
|
||||
if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY;
|
||||
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
|
||||
pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
|
||||
silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gains_Q16[ 1 ] ), 14 ) );
|
||||
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ];
|
||||
}
|
||||
|
||||
subfr = 0;
|
||||
}
|
||||
|
||||
/* Rewhiten with new A coefs */
|
||||
start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
|
||||
celt_assert( start_idx > 0 );
|
||||
|
||||
silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
|
||||
A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
|
||||
|
||||
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
||||
NSQ->rewhite_flag = 1;
|
||||
}
|
||||
}
|
||||
|
||||
silk_nsq_del_dec_scale_states_sse4_1( psEncC, NSQ, psDelDec, x_Q3, x_sc_Q10, sLTP, sLTP_Q15, k,
|
||||
psEncC->nStatesDelayedDecision, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay );
|
||||
|
||||
silk_noise_shape_quantizer_del_dec_sse4_1( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
|
||||
delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ],
|
||||
Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
|
||||
psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay );
|
||||
|
||||
x_Q3 += psEncC->subfr_length;
|
||||
pulses += psEncC->subfr_length;
|
||||
pxq += psEncC->subfr_length;
|
||||
}
|
||||
|
||||
/* Find winner */
|
||||
RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
|
||||
Winner_ind = 0;
|
||||
for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) {
|
||||
if( psDelDec[ k ].RD_Q10 < RDmin_Q10 ) {
|
||||
RDmin_Q10 = psDelDec[ k ].RD_Q10;
|
||||
Winner_ind = k;
|
||||
}
|
||||
}
|
||||
|
||||
/* Copy final part of signals from winner state to output and long-term filter states */
|
||||
psDD = &psDelDec[ Winner_ind ];
|
||||
psIndices->Seed = psDD->SeedInit;
|
||||
last_smple_idx = smpl_buf_idx + decisionDelay;
|
||||
Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 );
|
||||
for( i = 0; i < decisionDelay; i++ ) {
|
||||
last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY;
|
||||
if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY;
|
||||
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
|
||||
pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
|
||||
silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gain_Q10 ), 8 ) );
|
||||
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ];
|
||||
}
|
||||
silk_memcpy( NSQ->sLPC_Q14, &psDD->sLPC_Q14[ psEncC->subfr_length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
||||
silk_memcpy( NSQ->sAR2_Q14, psDD->sAR2_Q14, sizeof( psDD->sAR2_Q14 ) );
|
||||
|
||||
/* Update states */
|
||||
NSQ->sLF_AR_shp_Q14 = psDD->LF_AR_Q14;
|
||||
NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
|
||||
|
||||
/* Save quantized speech signal */
|
||||
silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
|
||||
silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
|
||||
RESTORE_STACK;
|
||||
}
|
||||
|
||||
/******************************************/
|
||||
/* Noise shape quantizer for one subframe */
|
||||
/******************************************/
|
||||
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_sse4_1(
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
||||
opus_int signalType, /* I Signal type */
|
||||
const opus_int32 x_Q10[], /* I */
|
||||
opus_int8 pulses[], /* O */
|
||||
opus_int16 xq[], /* O */
|
||||
opus_int32 sLTP_Q15[], /* I/O LTP filter state */
|
||||
opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
|
||||
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
||||
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
||||
const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
||||
opus_int lag, /* I Pitch lag */
|
||||
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
||||
opus_int Tilt_Q14, /* I Spectral tilt */
|
||||
opus_int32 LF_shp_Q14, /* I */
|
||||
opus_int32 Gain_Q16, /* I */
|
||||
opus_int Lambda_Q10, /* I */
|
||||
opus_int offset_Q10, /* I */
|
||||
opus_int length, /* I Input length */
|
||||
opus_int subfr, /* I Subframe number */
|
||||
opus_int shapingLPCOrder, /* I Shaping LPC filter order */
|
||||
opus_int predictLPCOrder, /* I Prediction filter order */
|
||||
opus_int warping_Q16, /* I */
|
||||
opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
|
||||
opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */
|
||||
opus_int decisionDelay /* I */
|
||||
)
|
||||
{
|
||||
opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx;
|
||||
opus_int32 Winner_rand_state;
|
||||
opus_int32 LTP_pred_Q14, LPC_pred_Q14, n_AR_Q14, n_LTP_Q14;
|
||||
opus_int32 n_LF_Q14, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10;
|
||||
opus_int32 q1_Q0, q1_Q10, q2_Q10, exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
|
||||
opus_int32 tmp1, tmp2, sLF_AR_shp_Q14;
|
||||
opus_int32 *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14;
|
||||
VARDECL( NSQ_sample_pair, psSampleState );
|
||||
NSQ_del_dec_struct *psDD;
|
||||
NSQ_sample_struct *psSS;
|
||||
|
||||
__m128i a_Q12_0123, a_Q12_4567, a_Q12_89AB, a_Q12_CDEF;
|
||||
__m128i b_Q12_0123, b_sr_Q12_0123;
|
||||
SAVE_STACK;
|
||||
|
||||
celt_assert( nStatesDelayedDecision > 0 );
|
||||
ALLOC( psSampleState, nStatesDelayedDecision, NSQ_sample_pair );
|
||||
|
||||
shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
|
||||
pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
|
||||
Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
|
||||
|
||||
a_Q12_0123 = OP_CVTEPI16_EPI32_M64( a_Q12 );
|
||||
a_Q12_4567 = OP_CVTEPI16_EPI32_M64( a_Q12 + 4 );
|
||||
|
||||
if( opus_likely( predictLPCOrder == 16 ) ) {
|
||||
a_Q12_89AB = OP_CVTEPI16_EPI32_M64( a_Q12 + 8 );
|
||||
a_Q12_CDEF = OP_CVTEPI16_EPI32_M64( a_Q12 + 12 );
|
||||
}
|
||||
|
||||
if( signalType == TYPE_VOICED ){
|
||||
b_Q12_0123 = OP_CVTEPI16_EPI32_M64( b_Q14 );
|
||||
b_sr_Q12_0123 = _mm_shuffle_epi32( b_Q12_0123, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* equal shift right 4 bytes */
|
||||
}
|
||||
for( i = 0; i < length; i++ ) {
|
||||
/* Perform common calculations used in all states */
|
||||
|
||||
/* Long-term prediction */
|
||||
if( signalType == TYPE_VOICED ) {
|
||||
/* Unrolled loop */
|
||||
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
||||
LTP_pred_Q14 = 2;
|
||||
{
|
||||
__m128i tmpa, tmpb, pred_lag_ptr_tmp;
|
||||
pred_lag_ptr_tmp = _mm_loadu_si128( (__m128i *)(&pred_lag_ptr[ -3 ] ) );
|
||||
pred_lag_ptr_tmp = _mm_shuffle_epi32( pred_lag_ptr_tmp, 0x1B );
|
||||
tmpa = _mm_mul_epi32( pred_lag_ptr_tmp, b_Q12_0123 );
|
||||
tmpa = _mm_srli_si128( tmpa, 2 );
|
||||
|
||||
pred_lag_ptr_tmp = _mm_shuffle_epi32( pred_lag_ptr_tmp, _MM_SHUFFLE( 0, 3, 2, 1 ) );/* equal shift right 4 bytes */
|
||||
pred_lag_ptr_tmp = _mm_mul_epi32( pred_lag_ptr_tmp, b_sr_Q12_0123 );
|
||||
pred_lag_ptr_tmp = _mm_srli_si128( pred_lag_ptr_tmp, 2 );
|
||||
pred_lag_ptr_tmp = _mm_add_epi32( pred_lag_ptr_tmp, tmpa );
|
||||
|
||||
tmpb = _mm_shuffle_epi32( pred_lag_ptr_tmp, _MM_SHUFFLE( 0, 0, 3, 2 ) );/* equal shift right 8 bytes */
|
||||
pred_lag_ptr_tmp = _mm_add_epi32( pred_lag_ptr_tmp, tmpb );
|
||||
LTP_pred_Q14 += _mm_cvtsi128_si32( pred_lag_ptr_tmp );
|
||||
|
||||
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
|
||||
LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */
|
||||
pred_lag_ptr++;
|
||||
}
|
||||
} else {
|
||||
LTP_pred_Q14 = 0;
|
||||
}
|
||||
|
||||
/* Long-term shaping */
|
||||
if( lag > 0 ) {
|
||||
/* Symmetric, packed FIR coefficients */
|
||||
n_LTP_Q14 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
|
||||
n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
|
||||
n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */
|
||||
shp_lag_ptr++;
|
||||
} else {
|
||||
n_LTP_Q14 = 0;
|
||||
}
|
||||
{
|
||||
__m128i tmpa, tmpb, psLPC_Q14_tmp, a_Q12_tmp;
|
||||
|
||||
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
||||
/* Delayed decision state */
|
||||
psDD = &psDelDec[ k ];
|
||||
|
||||
/* Sample state */
|
||||
psSS = psSampleState[ k ];
|
||||
|
||||
/* Generate dither */
|
||||
psDD->Seed = silk_RAND( psDD->Seed );
|
||||
|
||||
/* Pointer used in short term prediction and shaping */
|
||||
psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ];
|
||||
/* Short-term prediction */
|
||||
silk_assert( predictLPCOrder == 10 || predictLPCOrder == 16 );
|
||||
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
||||
LPC_pred_Q14 = silk_RSHIFT( predictLPCOrder, 1 );
|
||||
|
||||
tmpb = _mm_setzero_si128();
|
||||
|
||||
/* step 1 */
|
||||
psLPC_Q14_tmp = _mm_loadu_si128( (__m128i *)(&psLPC_Q14[ -3 ] ) ); /* -3, -2 , -1, 0 */
|
||||
psLPC_Q14_tmp = _mm_shuffle_epi32( psLPC_Q14_tmp, 0x1B ); /* 0, -1, -2, -3 */
|
||||
tmpa = _mm_mul_epi32( psLPC_Q14_tmp, a_Q12_0123 ); /* 0, -1, -2, -3 * 0123 -> 0*0, 2*-2 */
|
||||
|
||||
tmpa = _mm_srli_epi64( tmpa, 16 );
|
||||
tmpb = _mm_add_epi32( tmpb, tmpa );
|
||||
|
||||
psLPC_Q14_tmp = _mm_shuffle_epi32( psLPC_Q14_tmp, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* equal shift right 4 bytes */
|
||||
a_Q12_tmp = _mm_shuffle_epi32( a_Q12_0123, _MM_SHUFFLE(0, 3, 2, 1 ) ); /* equal shift right 4 bytes */
|
||||
psLPC_Q14_tmp = _mm_mul_epi32( psLPC_Q14_tmp, a_Q12_tmp ); /* 1*-1, 3*-3 */
|
||||
psLPC_Q14_tmp = _mm_srli_epi64( psLPC_Q14_tmp, 16 );
|
||||
tmpb = _mm_add_epi32( tmpb, psLPC_Q14_tmp );
|
||||
|
||||
/* step 2 */
|
||||
psLPC_Q14_tmp = _mm_loadu_si128( (__m128i *)(&psLPC_Q14[ -7 ] ) );
|
||||
psLPC_Q14_tmp = _mm_shuffle_epi32( psLPC_Q14_tmp, 0x1B );
|
||||
tmpa = _mm_mul_epi32( psLPC_Q14_tmp, a_Q12_4567 );
|
||||
tmpa = _mm_srli_epi64( tmpa, 16 );
|
||||
tmpb = _mm_add_epi32( tmpb, tmpa );
|
||||
|
||||
psLPC_Q14_tmp = _mm_shuffle_epi32( psLPC_Q14_tmp, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* equal shift right 4 bytes */
|
||||
a_Q12_tmp = _mm_shuffle_epi32( a_Q12_4567, _MM_SHUFFLE(0, 3, 2, 1 ) ); /* equal shift right 4 bytes */
|
||||
psLPC_Q14_tmp = _mm_mul_epi32( psLPC_Q14_tmp, a_Q12_tmp );
|
||||
psLPC_Q14_tmp = _mm_srli_epi64( psLPC_Q14_tmp, 16 );
|
||||
tmpb = _mm_add_epi32( tmpb, psLPC_Q14_tmp );
|
||||
|
||||
if ( opus_likely( predictLPCOrder == 16 ) )
|
||||
{
|
||||
/* step 3 */
|
||||
psLPC_Q14_tmp = _mm_loadu_si128( (__m128i *)(&psLPC_Q14[ -11 ] ) );
|
||||
psLPC_Q14_tmp = _mm_shuffle_epi32( psLPC_Q14_tmp, 0x1B );
|
||||
tmpa = _mm_mul_epi32( psLPC_Q14_tmp, a_Q12_89AB );
|
||||
tmpa = _mm_srli_epi64( tmpa, 16 );
|
||||
tmpb = _mm_add_epi32( tmpb, tmpa );
|
||||
|
||||
psLPC_Q14_tmp = _mm_shuffle_epi32( psLPC_Q14_tmp, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* equal shift right 4 bytes */
|
||||
a_Q12_tmp = _mm_shuffle_epi32( a_Q12_89AB, _MM_SHUFFLE(0, 3, 2, 1 ) );/* equal shift right 4 bytes */
|
||||
psLPC_Q14_tmp = _mm_mul_epi32( psLPC_Q14_tmp, a_Q12_tmp );
|
||||
psLPC_Q14_tmp = _mm_srli_epi64( psLPC_Q14_tmp, 16 );
|
||||
tmpb = _mm_add_epi32( tmpb, psLPC_Q14_tmp );
|
||||
|
||||
/* setp 4 */
|
||||
psLPC_Q14_tmp = _mm_loadu_si128( (__m128i *)(&psLPC_Q14[ -15 ] ) );
|
||||
psLPC_Q14_tmp = _mm_shuffle_epi32( psLPC_Q14_tmp, 0x1B );
|
||||
tmpa = _mm_mul_epi32( psLPC_Q14_tmp, a_Q12_CDEF );
|
||||
tmpa = _mm_srli_epi64( tmpa, 16 );
|
||||
tmpb = _mm_add_epi32( tmpb, tmpa );
|
||||
|
||||
psLPC_Q14_tmp = _mm_shuffle_epi32( psLPC_Q14_tmp, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* equal shift right 4 bytes */
|
||||
a_Q12_tmp = _mm_shuffle_epi32( a_Q12_CDEF, _MM_SHUFFLE(0, 3, 2, 1 ) ); /* equal shift right 4 bytes */
|
||||
psLPC_Q14_tmp = _mm_mul_epi32( psLPC_Q14_tmp, a_Q12_tmp );
|
||||
psLPC_Q14_tmp = _mm_srli_epi64( psLPC_Q14_tmp, 16 );
|
||||
tmpb = _mm_add_epi32( tmpb, psLPC_Q14_tmp );
|
||||
|
||||
/* add at last */
|
||||
/* equal shift right 8 bytes*/
|
||||
tmpa = _mm_shuffle_epi32( tmpb, _MM_SHUFFLE( 0, 0, 3, 2 ) );
|
||||
tmpb = _mm_add_epi32( tmpb, tmpa );
|
||||
LPC_pred_Q14 += _mm_cvtsi128_si32( tmpb );
|
||||
}
|
||||
else
|
||||
{
|
||||
/* add at last */
|
||||
tmpa = _mm_shuffle_epi32( tmpb, _MM_SHUFFLE( 0, 0, 3, 2 ) ); /* equal shift right 8 bytes*/
|
||||
tmpb = _mm_add_epi32( tmpb, tmpa );
|
||||
LPC_pred_Q14 += _mm_cvtsi128_si32( tmpb );
|
||||
|
||||
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -8 ], a_Q12[ 8 ] );
|
||||
LPC_pred_Q14 = silk_SMLAWB( LPC_pred_Q14, psLPC_Q14[ -9 ], a_Q12[ 9 ] );
|
||||
}
|
||||
|
||||
LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 ); /* Q10 -> Q14 */
|
||||
|
||||
/* Noise shape feedback */
|
||||
silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
|
||||
/* Output of lowpass section */
|
||||
tmp2 = silk_SMLAWB( psLPC_Q14[ 0 ], psDD->sAR2_Q14[ 0 ], warping_Q16 );
|
||||
/* Output of allpass section */
|
||||
tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 );
|
||||
psDD->sAR2_Q14[ 0 ] = tmp2;
|
||||
n_AR_Q14 = silk_RSHIFT( shapingLPCOrder, 1 );
|
||||
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ 0 ] );
|
||||
/* Loop over allpass sections */
|
||||
for( j = 2; j < shapingLPCOrder; j += 2 ) {
|
||||
/* Output of allpass section */
|
||||
tmp2 = silk_SMLAWB( psDD->sAR2_Q14[ j - 1 ], psDD->sAR2_Q14[ j + 0 ] - tmp1, warping_Q16 );
|
||||
psDD->sAR2_Q14[ j - 1 ] = tmp1;
|
||||
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ j - 1 ] );
|
||||
/* Output of allpass section */
|
||||
tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ j + 0 ], psDD->sAR2_Q14[ j + 1 ] - tmp2, warping_Q16 );
|
||||
psDD->sAR2_Q14[ j + 0 ] = tmp2;
|
||||
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ j ] );
|
||||
}
|
||||
psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1;
|
||||
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] );
|
||||
|
||||
n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 1 ); /* Q11 -> Q12 */
|
||||
n_AR_Q14 = silk_SMLAWB( n_AR_Q14, psDD->LF_AR_Q14, Tilt_Q14 ); /* Q12 */
|
||||
n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 2 ); /* Q12 -> Q14 */
|
||||
|
||||
n_LF_Q14 = silk_SMULWB( psDD->Shape_Q14[ *smpl_buf_idx ], LF_shp_Q14 ); /* Q12 */
|
||||
n_LF_Q14 = silk_SMLAWT( n_LF_Q14, psDD->LF_AR_Q14, LF_shp_Q14 ); /* Q12 */
|
||||
n_LF_Q14 = silk_LSHIFT( n_LF_Q14, 2 ); /* Q12 -> Q14 */
|
||||
|
||||
/* Input minus prediction plus noise feedback */
|
||||
/* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */
|
||||
tmp1 = silk_ADD32( n_AR_Q14, n_LF_Q14 ); /* Q14 */
|
||||
tmp2 = silk_ADD32( n_LTP_Q14, LPC_pred_Q14 ); /* Q13 */
|
||||
tmp1 = silk_SUB32( tmp2, tmp1 ); /* Q13 */
|
||||
tmp1 = silk_RSHIFT_ROUND( tmp1, 4 ); /* Q10 */
|
||||
|
||||
r_Q10 = silk_SUB32( x_Q10[ i ], tmp1 ); /* residual error Q10 */
|
||||
|
||||
/* Flip sign depending on dither */
|
||||
if ( psDD->Seed < 0 ) {
|
||||
r_Q10 = -r_Q10;
|
||||
}
|
||||
r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
|
||||
|
||||
/* Find two quantization level candidates and measure their rate-distortion */
|
||||
q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
|
||||
q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
|
||||
if( q1_Q0 > 0 ) {
|
||||
q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
|
||||
q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
|
||||
q2_Q10 = silk_ADD32( q1_Q10, 1024 );
|
||||
rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
|
||||
rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
||||
} else if( q1_Q0 == 0 ) {
|
||||
q1_Q10 = offset_Q10;
|
||||
q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
||||
rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
|
||||
rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
||||
} else if( q1_Q0 == -1 ) {
|
||||
q2_Q10 = offset_Q10;
|
||||
q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
||||
rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
|
||||
rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
||||
} else { /* q1_Q0 < -1 */
|
||||
q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
|
||||
q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
|
||||
q2_Q10 = silk_ADD32( q1_Q10, 1024 );
|
||||
rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
|
||||
rd2_Q10 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
|
||||
}
|
||||
rr_Q10 = silk_SUB32( r_Q10, q1_Q10 );
|
||||
rd1_Q10 = silk_RSHIFT( silk_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 );
|
||||
rr_Q10 = silk_SUB32( r_Q10, q2_Q10 );
|
||||
rd2_Q10 = silk_RSHIFT( silk_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 );
|
||||
|
||||
if( rd1_Q10 < rd2_Q10 ) {
|
||||
psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
|
||||
psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
|
||||
psSS[ 0 ].Q_Q10 = q1_Q10;
|
||||
psSS[ 1 ].Q_Q10 = q2_Q10;
|
||||
} else {
|
||||
psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
|
||||
psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
|
||||
psSS[ 0 ].Q_Q10 = q2_Q10;
|
||||
psSS[ 1 ].Q_Q10 = q1_Q10;
|
||||
}
|
||||
|
||||
/* Update states for best quantization */
|
||||
|
||||
/* Quantized excitation */
|
||||
exc_Q14 = silk_LSHIFT32( psSS[ 0 ].Q_Q10, 4 );
|
||||
if ( psDD->Seed < 0 ) {
|
||||
exc_Q14 = -exc_Q14;
|
||||
}
|
||||
|
||||
/* Add predictions */
|
||||
LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
|
||||
xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );
|
||||
|
||||
/* Update states */
|
||||
sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 );
|
||||
psSS[ 0 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 );
|
||||
psSS[ 0 ].LF_AR_Q14 = sLF_AR_shp_Q14;
|
||||
psSS[ 0 ].LPC_exc_Q14 = LPC_exc_Q14;
|
||||
psSS[ 0 ].xq_Q14 = xq_Q14;
|
||||
|
||||
/* Update states for second best quantization */
|
||||
|
||||
/* Quantized excitation */
|
||||
exc_Q14 = silk_LSHIFT32( psSS[ 1 ].Q_Q10, 4 );
|
||||
if ( psDD->Seed < 0 ) {
|
||||
exc_Q14 = -exc_Q14;
|
||||
}
|
||||
|
||||
|
||||
/* Add predictions */
|
||||
LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
|
||||
xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );
|
||||
|
||||
/* Update states */
|
||||
sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 );
|
||||
psSS[ 1 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 );
|
||||
psSS[ 1 ].LF_AR_Q14 = sLF_AR_shp_Q14;
|
||||
psSS[ 1 ].LPC_exc_Q14 = LPC_exc_Q14;
|
||||
psSS[ 1 ].xq_Q14 = xq_Q14;
|
||||
}
|
||||
}
|
||||
*smpl_buf_idx = ( *smpl_buf_idx - 1 ) % DECISION_DELAY;
|
||||
if( *smpl_buf_idx < 0 ) *smpl_buf_idx += DECISION_DELAY;
|
||||
last_smple_idx = ( *smpl_buf_idx + decisionDelay ) % DECISION_DELAY;
|
||||
|
||||
/* Find winner */
|
||||
RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
|
||||
Winner_ind = 0;
|
||||
for( k = 1; k < nStatesDelayedDecision; k++ ) {
|
||||
if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) {
|
||||
RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
|
||||
Winner_ind = k;
|
||||
}
|
||||
}
|
||||
|
||||
/* Increase RD values of expired states */
|
||||
Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ];
|
||||
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
||||
if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) {
|
||||
psSampleState[ k ][ 0 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 0 ].RD_Q10, silk_int32_MAX >> 4 );
|
||||
psSampleState[ k ][ 1 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 1 ].RD_Q10, silk_int32_MAX >> 4 );
|
||||
silk_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 );
|
||||
}
|
||||
}
|
||||
|
||||
/* Find worst in first set and best in second set */
|
||||
RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
|
||||
RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10;
|
||||
RDmax_ind = 0;
|
||||
RDmin_ind = 0;
|
||||
for( k = 1; k < nStatesDelayedDecision; k++ ) {
|
||||
/* find worst in first set */
|
||||
if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) {
|
||||
RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
|
||||
RDmax_ind = k;
|
||||
}
|
||||
/* find best in second set */
|
||||
if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) {
|
||||
RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10;
|
||||
RDmin_ind = k;
|
||||
}
|
||||
}
|
||||
|
||||
/* Replace a state if best from second set outperforms worst in first set */
|
||||
if( RDmin_Q10 < RDmax_Q10 ) {
|
||||
silk_memcpy( ( (opus_int32 *)&psDelDec[ RDmax_ind ] ) + i,
|
||||
( (opus_int32 *)&psDelDec[ RDmin_ind ] ) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) );
|
||||
silk_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) );
|
||||
}
|
||||
|
||||
/* Write samples from winner to output and long-term filter states */
|
||||
psDD = &psDelDec[ Winner_ind ];
|
||||
if( subfr > 0 || i >= decisionDelay ) {
|
||||
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
|
||||
xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
|
||||
silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], delayedGain_Q10[ last_smple_idx ] ), 8 ) );
|
||||
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q14[ last_smple_idx ];
|
||||
sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q15[ last_smple_idx ];
|
||||
}
|
||||
NSQ->sLTP_shp_buf_idx++;
|
||||
NSQ->sLTP_buf_idx++;
|
||||
|
||||
/* Update states */
|
||||
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
||||
psDD = &psDelDec[ k ];
|
||||
psSS = &psSampleState[ k ][ 0 ];
|
||||
psDD->LF_AR_Q14 = psSS->LF_AR_Q14;
|
||||
psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14;
|
||||
psDD->Xq_Q14[ *smpl_buf_idx ] = psSS->xq_Q14;
|
||||
psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10;
|
||||
psDD->Pred_Q15[ *smpl_buf_idx ] = silk_LSHIFT32( psSS->LPC_exc_Q14, 1 );
|
||||
psDD->Shape_Q14[ *smpl_buf_idx ] = psSS->sLTP_shp_Q14;
|
||||
psDD->Seed = silk_ADD32_ovflw( psDD->Seed, silk_RSHIFT_ROUND( psSS->Q_Q10, 10 ) );
|
||||
psDD->RandState[ *smpl_buf_idx ] = psDD->Seed;
|
||||
psDD->RD_Q10 = psSS->RD_Q10;
|
||||
}
|
||||
delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10;
|
||||
}
|
||||
/* Update LPC states */
|
||||
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
||||
psDD = &psDelDec[ k ];
|
||||
silk_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
||||
}
|
||||
RESTORE_STACK;
|
||||
}
|
||||
|
||||
static OPUS_INLINE void silk_nsq_del_dec_scale_states_sse4_1(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
||||
const opus_int32 x_Q3[], /* I Input in Q3 */
|
||||
opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
|
||||
const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
||||
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
||||
opus_int subfr, /* I Subframe number */
|
||||
opus_int nStatesDelayedDecision, /* I Number of del dec states */
|
||||
const opus_int LTP_scale_Q14, /* I LTP state scaling */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
||||
const opus_int signal_type, /* I Signal type */
|
||||
const opus_int decisionDelay /* I Decision delay */
|
||||
)
|
||||
{
|
||||
opus_int i, k, lag;
|
||||
opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q23;
|
||||
NSQ_del_dec_struct *psDD;
|
||||
__m128i xmm_inv_gain_Q23, xmm_x_Q3_x2x0, xmm_x_Q3_x3x1;
|
||||
|
||||
lag = pitchL[ subfr ];
|
||||
inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
|
||||
|
||||
silk_assert( inv_gain_Q31 != 0 );
|
||||
|
||||
/* Calculate gain adjustment factor */
|
||||
if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
|
||||
gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
|
||||
} else {
|
||||
gain_adj_Q16 = (opus_int32)1 << 16;
|
||||
}
|
||||
|
||||
/* Scale input */
|
||||
inv_gain_Q23 = silk_RSHIFT_ROUND( inv_gain_Q31, 8 );
|
||||
|
||||
/* prepare inv_gain_Q23 in packed 4 32-bits */
|
||||
xmm_inv_gain_Q23 = _mm_set1_epi32(inv_gain_Q23);
|
||||
|
||||
for( i = 0; i < psEncC->subfr_length - 3; i += 4 ) {
|
||||
xmm_x_Q3_x2x0 = _mm_loadu_si128( (__m128i *)(&(x_Q3[ i ] ) ) );
|
||||
/* equal shift right 4 bytes*/
|
||||
xmm_x_Q3_x3x1 = _mm_shuffle_epi32( xmm_x_Q3_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) );
|
||||
|
||||
xmm_x_Q3_x2x0 = _mm_mul_epi32( xmm_x_Q3_x2x0, xmm_inv_gain_Q23 );
|
||||
xmm_x_Q3_x3x1 = _mm_mul_epi32( xmm_x_Q3_x3x1, xmm_inv_gain_Q23 );
|
||||
|
||||
xmm_x_Q3_x2x0 = _mm_srli_epi64( xmm_x_Q3_x2x0, 16 );
|
||||
xmm_x_Q3_x3x1 = _mm_slli_epi64( xmm_x_Q3_x3x1, 16 );
|
||||
|
||||
xmm_x_Q3_x2x0 = _mm_blend_epi16( xmm_x_Q3_x2x0, xmm_x_Q3_x3x1, 0xCC );
|
||||
|
||||
_mm_storeu_si128( (__m128i *)(&(x_sc_Q10[ i ])), xmm_x_Q3_x2x0 );
|
||||
}
|
||||
|
||||
for( ; i < psEncC->subfr_length; i++ ) {
|
||||
x_sc_Q10[ i ] = silk_SMULWW( x_Q3[ i ], inv_gain_Q23 );
|
||||
}
|
||||
|
||||
/* Save inverse gain */
|
||||
NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
|
||||
|
||||
/* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
|
||||
if( NSQ->rewhite_flag ) {
|
||||
if( subfr == 0 ) {
|
||||
/* Do LTP downscaling */
|
||||
inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
|
||||
}
|
||||
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
||||
silk_assert( i < MAX_FRAME_LENGTH );
|
||||
sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
|
||||
}
|
||||
}
|
||||
|
||||
/* Adjust for changing gain */
|
||||
if( gain_adj_Q16 != (opus_int32)1 << 16 ) {
|
||||
/* Scale long-term shaping state */
|
||||
{
|
||||
__m128i xmm_gain_adj_Q16, xmm_sLTP_shp_Q14_x2x0, xmm_sLTP_shp_Q14_x3x1;
|
||||
|
||||
/* prepare gain_adj_Q16 in packed 4 32-bits */
|
||||
xmm_gain_adj_Q16 = _mm_set1_epi32( gain_adj_Q16 );
|
||||
|
||||
for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx - 3; i += 4 )
|
||||
{
|
||||
xmm_sLTP_shp_Q14_x2x0 = _mm_loadu_si128( (__m128i *)(&(NSQ->sLTP_shp_Q14[ i ] ) ) );
|
||||
/* equal shift right 4 bytes*/
|
||||
xmm_sLTP_shp_Q14_x3x1 = _mm_shuffle_epi32( xmm_sLTP_shp_Q14_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) );
|
||||
|
||||
xmm_sLTP_shp_Q14_x2x0 = _mm_mul_epi32( xmm_sLTP_shp_Q14_x2x0, xmm_gain_adj_Q16 );
|
||||
xmm_sLTP_shp_Q14_x3x1 = _mm_mul_epi32( xmm_sLTP_shp_Q14_x3x1, xmm_gain_adj_Q16 );
|
||||
|
||||
xmm_sLTP_shp_Q14_x2x0 = _mm_srli_epi64( xmm_sLTP_shp_Q14_x2x0, 16 );
|
||||
xmm_sLTP_shp_Q14_x3x1 = _mm_slli_epi64( xmm_sLTP_shp_Q14_x3x1, 16 );
|
||||
|
||||
xmm_sLTP_shp_Q14_x2x0 = _mm_blend_epi16( xmm_sLTP_shp_Q14_x2x0, xmm_sLTP_shp_Q14_x3x1, 0xCC );
|
||||
|
||||
_mm_storeu_si128( (__m128i *)(&(NSQ->sLTP_shp_Q14[ i ] ) ), xmm_sLTP_shp_Q14_x2x0 );
|
||||
}
|
||||
|
||||
for( ; i < NSQ->sLTP_shp_buf_idx; i++ ) {
|
||||
NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
|
||||
}
|
||||
|
||||
/* Scale long-term prediction state */
|
||||
if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
|
||||
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) {
|
||||
sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
|
||||
}
|
||||
}
|
||||
|
||||
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
||||
psDD = &psDelDec[ k ];
|
||||
|
||||
/* Scale scalar states */
|
||||
psDD->LF_AR_Q14 = silk_SMULWW( gain_adj_Q16, psDD->LF_AR_Q14 );
|
||||
|
||||
/* Scale short-term prediction and shaping states */
|
||||
for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
||||
psDD->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sLPC_Q14[ i ] );
|
||||
}
|
||||
for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
|
||||
psDD->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sAR2_Q14[ i ] );
|
||||
}
|
||||
for( i = 0; i < DECISION_DELAY; i++ ) {
|
||||
psDD->Pred_Q15[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Pred_Q15[ i ] );
|
||||
psDD->Shape_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Shape_Q14[ i ] );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* OpenMPT */
|
723
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/NSQ_sse4_1.c
vendored
Normal file
723
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/NSQ_sse4_1.c
vendored
Normal file
|
@ -0,0 +1,723 @@
|
|||
/* Copyright (c) 2014, Cisco Systems, INC
|
||||
Written by XiangMingZhu WeiZhou MinPeng YanWang
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#if defined(OPUS_X86_MAY_HAVE_SSE4_1) /* OpenMPT */
|
||||
|
||||
#include <xmmintrin.h>
|
||||
#include <emmintrin.h>
|
||||
#include <smmintrin.h>
|
||||
#include "main.h"
|
||||
#include "celt/x86/x86cpu.h"
|
||||
#include "stack_alloc.h"
|
||||
|
||||
static OPUS_INLINE void silk_nsq_scale_states_sse4_1(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
const opus_int32 x_Q3[], /* I input in Q3 */
|
||||
opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */
|
||||
const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */
|
||||
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
||||
opus_int subfr, /* I subframe number */
|
||||
const opus_int LTP_scale_Q14, /* I */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
||||
const opus_int signal_type /* I Signal type */
|
||||
);
|
||||
|
||||
static OPUS_INLINE void silk_noise_shape_quantizer_10_16_sse4_1(
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
opus_int signalType, /* I Signal type */
|
||||
const opus_int32 x_sc_Q10[], /* I */
|
||||
opus_int8 pulses[], /* O */
|
||||
opus_int16 xq[], /* O */
|
||||
opus_int32 sLTP_Q15[], /* I/O LTP state */
|
||||
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
||||
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
||||
const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
|
||||
opus_int lag, /* I Pitch lag */
|
||||
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
||||
opus_int Tilt_Q14, /* I Spectral tilt */
|
||||
opus_int32 LF_shp_Q14, /* I */
|
||||
opus_int32 Gain_Q16, /* I */
|
||||
opus_int offset_Q10, /* I */
|
||||
opus_int length, /* I Input length */
|
||||
opus_int32 table[][4] /* I */
|
||||
);
|
||||
|
||||
void silk_NSQ_sse4_1(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
||||
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
||||
opus_int8 pulses[], /* O Quantized pulse signal */
|
||||
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
||||
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
||||
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
||||
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
||||
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
||||
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
||||
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
||||
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
||||
)
|
||||
{
|
||||
opus_int k, lag, start_idx, LSF_interpolation_flag;
|
||||
const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
|
||||
opus_int16 *pxq;
|
||||
VARDECL( opus_int32, sLTP_Q15 );
|
||||
VARDECL( opus_int16, sLTP );
|
||||
opus_int32 HarmShapeFIRPacked_Q14;
|
||||
opus_int offset_Q10;
|
||||
VARDECL( opus_int32, x_sc_Q10 );
|
||||
|
||||
opus_int32 table[ 64 ][ 4 ];
|
||||
opus_int32 tmp1;
|
||||
opus_int32 q1_Q10, q2_Q10, rd1_Q20, rd2_Q20;
|
||||
|
||||
SAVE_STACK;
|
||||
|
||||
NSQ->rand_seed = psIndices->Seed;
|
||||
|
||||
/* Set unvoiced lag to the previous one, overwrite later for voiced */
|
||||
lag = NSQ->lagPrev;
|
||||
|
||||
silk_assert( NSQ->prev_gain_Q16 != 0 );
|
||||
|
||||
offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
|
||||
|
||||
/* 0 */
|
||||
q1_Q10 = offset_Q10;
|
||||
q2_Q10 = offset_Q10 + ( 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
||||
rd1_Q20 = q1_Q10 * Lambda_Q10;
|
||||
rd2_Q20 = q2_Q10 * Lambda_Q10;
|
||||
|
||||
table[ 32 ][ 0 ] = q1_Q10;
|
||||
table[ 32 ][ 1 ] = q2_Q10;
|
||||
table[ 32 ][ 2 ] = 2 * (q1_Q10 - q2_Q10);
|
||||
table[ 32 ][ 3 ] = (rd1_Q20 - rd2_Q20) + (q1_Q10 * q1_Q10 - q2_Q10 * q2_Q10);
|
||||
|
||||
/* -1 */
|
||||
q1_Q10 = offset_Q10 - ( 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
||||
q2_Q10 = offset_Q10;
|
||||
rd1_Q20 = - q1_Q10 * Lambda_Q10;
|
||||
rd2_Q20 = q2_Q10 * Lambda_Q10;
|
||||
|
||||
table[ 31 ][ 0 ] = q1_Q10;
|
||||
table[ 31 ][ 1 ] = q2_Q10;
|
||||
table[ 31 ][ 2 ] = 2 * (q1_Q10 - q2_Q10);
|
||||
table[ 31 ][ 3 ] = (rd1_Q20 - rd2_Q20) + (q1_Q10 * q1_Q10 - q2_Q10 * q2_Q10);
|
||||
|
||||
/* > 0 */
|
||||
for (k = 1; k <= 31; k++)
|
||||
{
|
||||
tmp1 = offset_Q10 + silk_LSHIFT( k, 10 );
|
||||
|
||||
q1_Q10 = tmp1 - QUANT_LEVEL_ADJUST_Q10;
|
||||
q2_Q10 = tmp1 - QUANT_LEVEL_ADJUST_Q10 + 1024;
|
||||
rd1_Q20 = q1_Q10 * Lambda_Q10;
|
||||
rd2_Q20 = q2_Q10 * Lambda_Q10;
|
||||
|
||||
table[ 32 + k ][ 0 ] = q1_Q10;
|
||||
table[ 32 + k ][ 1 ] = q2_Q10;
|
||||
table[ 32 + k ][ 2 ] = 2 * (q1_Q10 - q2_Q10);
|
||||
table[ 32 + k ][ 3 ] = (rd1_Q20 - rd2_Q20) + (q1_Q10 * q1_Q10 - q2_Q10 * q2_Q10);
|
||||
}
|
||||
|
||||
/* < -1 */
|
||||
for (k = -32; k <= -2; k++)
|
||||
{
|
||||
tmp1 = offset_Q10 + silk_LSHIFT( k, 10 );
|
||||
|
||||
q1_Q10 = tmp1 + QUANT_LEVEL_ADJUST_Q10;
|
||||
q2_Q10 = tmp1 + QUANT_LEVEL_ADJUST_Q10 + 1024;
|
||||
rd1_Q20 = - q1_Q10 * Lambda_Q10;
|
||||
rd2_Q20 = - q2_Q10 * Lambda_Q10;
|
||||
|
||||
table[ 32 + k ][ 0 ] = q1_Q10;
|
||||
table[ 32 + k ][ 1 ] = q2_Q10;
|
||||
table[ 32 + k ][ 2 ] = 2 * (q1_Q10 - q2_Q10);
|
||||
table[ 32 + k ][ 3 ] = (rd1_Q20 - rd2_Q20) + (q1_Q10 * q1_Q10 - q2_Q10 * q2_Q10);
|
||||
}
|
||||
|
||||
if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
|
||||
LSF_interpolation_flag = 0;
|
||||
} else {
|
||||
LSF_interpolation_flag = 1;
|
||||
}
|
||||
|
||||
ALLOC( sLTP_Q15,
|
||||
psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
|
||||
ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
|
||||
ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
|
||||
/* Set up pointers to start of sub frame */
|
||||
NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
|
||||
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
||||
pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
|
||||
for( k = 0; k < psEncC->nb_subfr; k++ ) {
|
||||
A_Q12 = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ];
|
||||
B_Q14 = <PCoef_Q14[ k * LTP_ORDER ];
|
||||
AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ];
|
||||
|
||||
/* Noise shape parameters */
|
||||
silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
|
||||
HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
|
||||
HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
|
||||
|
||||
NSQ->rewhite_flag = 0;
|
||||
if( psIndices->signalType == TYPE_VOICED ) {
|
||||
/* Voiced */
|
||||
lag = pitchL[ k ];
|
||||
|
||||
/* Re-whitening */
|
||||
if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
|
||||
/* Rewhiten with new A coefs */
|
||||
start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
|
||||
celt_assert( start_idx > 0 );
|
||||
|
||||
silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
|
||||
A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
|
||||
|
||||
NSQ->rewhite_flag = 1;
|
||||
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
||||
}
|
||||
}
|
||||
|
||||
silk_nsq_scale_states_sse4_1( psEncC, NSQ, x_Q3, x_sc_Q10, sLTP, sLTP_Q15, k, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType );
|
||||
|
||||
if ( opus_likely( ( 10 == psEncC->shapingLPCOrder ) && ( 16 == psEncC->predictLPCOrder) ) )
|
||||
{
|
||||
silk_noise_shape_quantizer_10_16_sse4_1( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, A_Q12, B_Q14,
|
||||
AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ],
|
||||
offset_Q10, psEncC->subfr_length, &(table[32]) );
|
||||
}
|
||||
else
|
||||
{
|
||||
silk_noise_shape_quantizer( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, A_Q12, B_Q14,
|
||||
AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10,
|
||||
offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder, psEncC->arch );
|
||||
}
|
||||
|
||||
x_Q3 += psEncC->subfr_length;
|
||||
pulses += psEncC->subfr_length;
|
||||
pxq += psEncC->subfr_length;
|
||||
}
|
||||
|
||||
/* Update lagPrev for next frame */
|
||||
NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
|
||||
|
||||
/* Save quantized speech and noise shaping signals */
|
||||
silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
|
||||
silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
|
||||
RESTORE_STACK;
|
||||
}
|
||||
|
||||
/***********************************/
|
||||
/* silk_noise_shape_quantizer_10_16 */
|
||||
/***********************************/
|
||||
static OPUS_INLINE void silk_noise_shape_quantizer_10_16_sse4_1(
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
opus_int signalType, /* I Signal type */
|
||||
const opus_int32 x_sc_Q10[], /* I */
|
||||
opus_int8 pulses[], /* O */
|
||||
opus_int16 xq[], /* O */
|
||||
opus_int32 sLTP_Q15[], /* I/O LTP state */
|
||||
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
||||
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
||||
const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
|
||||
opus_int lag, /* I Pitch lag */
|
||||
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
||||
opus_int Tilt_Q14, /* I Spectral tilt */
|
||||
opus_int32 LF_shp_Q14, /* I */
|
||||
opus_int32 Gain_Q16, /* I */
|
||||
opus_int offset_Q10, /* I */
|
||||
opus_int length, /* I Input length */
|
||||
opus_int32 table[][4] /* I */
|
||||
)
|
||||
{
|
||||
opus_int i;
|
||||
opus_int32 LTP_pred_Q13, LPC_pred_Q10, n_AR_Q12, n_LTP_Q13;
|
||||
opus_int32 n_LF_Q12, r_Q10, q1_Q0, q1_Q10, q2_Q10;
|
||||
opus_int32 exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
|
||||
opus_int32 tmp1, tmp2, sLF_AR_shp_Q14;
|
||||
opus_int32 *psLPC_Q14, *shp_lag_ptr, *pred_lag_ptr;
|
||||
|
||||
__m128i xmm_tempa, xmm_tempb;
|
||||
|
||||
__m128i xmm_one;
|
||||
|
||||
__m128i psLPC_Q14_hi_01234567, psLPC_Q14_hi_89ABCDEF;
|
||||
__m128i psLPC_Q14_lo_01234567, psLPC_Q14_lo_89ABCDEF;
|
||||
__m128i a_Q12_01234567, a_Q12_89ABCDEF;
|
||||
|
||||
__m128i sAR2_Q14_hi_76543210, sAR2_Q14_lo_76543210;
|
||||
__m128i AR_shp_Q13_76543210;
|
||||
|
||||
shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
|
||||
pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
|
||||
Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
|
||||
|
||||
/* Set up short term AR state */
|
||||
psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 ];
|
||||
|
||||
sLF_AR_shp_Q14 = NSQ->sLF_AR_shp_Q14;
|
||||
xq_Q14 = psLPC_Q14[ 0 ];
|
||||
LTP_pred_Q13 = 0;
|
||||
|
||||
/* load a_Q12 */
|
||||
xmm_one = _mm_set_epi8( 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14 );
|
||||
|
||||
/* load a_Q12[0] - a_Q12[7] */
|
||||
a_Q12_01234567 = _mm_loadu_si128( (__m128i *)(&a_Q12[ 0 ] ) );
|
||||
/* load a_Q12[ 8 ] - a_Q12[ 15 ] */
|
||||
a_Q12_89ABCDEF = _mm_loadu_si128( (__m128i *)(&a_Q12[ 8 ] ) );
|
||||
|
||||
a_Q12_01234567 = _mm_shuffle_epi8( a_Q12_01234567, xmm_one );
|
||||
a_Q12_89ABCDEF = _mm_shuffle_epi8( a_Q12_89ABCDEF, xmm_one );
|
||||
|
||||
/* load AR_shp_Q13 */
|
||||
AR_shp_Q13_76543210 = _mm_loadu_si128( (__m128i *)(&AR_shp_Q13[0] ) );
|
||||
|
||||
/* load psLPC_Q14 */
|
||||
xmm_one = _mm_set_epi8(15, 14, 11, 10, 7, 6, 3, 2, 13, 12, 9, 8, 5, 4, 1, 0 );
|
||||
|
||||
xmm_tempa = _mm_loadu_si128( (__m128i *)(&psLPC_Q14[-16]) );
|
||||
xmm_tempb = _mm_loadu_si128( (__m128i *)(&psLPC_Q14[-12]) );
|
||||
|
||||
xmm_tempa = _mm_shuffle_epi8( xmm_tempa, xmm_one );
|
||||
xmm_tempb = _mm_shuffle_epi8( xmm_tempb, xmm_one );
|
||||
|
||||
psLPC_Q14_hi_89ABCDEF = _mm_unpackhi_epi64( xmm_tempa, xmm_tempb );
|
||||
psLPC_Q14_lo_89ABCDEF = _mm_unpacklo_epi64( xmm_tempa, xmm_tempb );
|
||||
|
||||
xmm_tempa = _mm_loadu_si128( (__m128i *)(&psLPC_Q14[ -8 ]) );
|
||||
xmm_tempb = _mm_loadu_si128( (__m128i *)(&psLPC_Q14[ -4 ]) );
|
||||
|
||||
xmm_tempa = _mm_shuffle_epi8( xmm_tempa, xmm_one );
|
||||
xmm_tempb = _mm_shuffle_epi8( xmm_tempb, xmm_one );
|
||||
|
||||
psLPC_Q14_hi_01234567 = _mm_unpackhi_epi64( xmm_tempa, xmm_tempb );
|
||||
psLPC_Q14_lo_01234567 = _mm_unpacklo_epi64( xmm_tempa, xmm_tempb );
|
||||
|
||||
/* load sAR2_Q14 */
|
||||
xmm_tempa = _mm_loadu_si128( (__m128i *)(&(NSQ->sAR2_Q14[ 0 ]) ) );
|
||||
xmm_tempb = _mm_loadu_si128( (__m128i *)(&(NSQ->sAR2_Q14[ 4 ]) ) );
|
||||
|
||||
xmm_tempa = _mm_shuffle_epi8( xmm_tempa, xmm_one );
|
||||
xmm_tempb = _mm_shuffle_epi8( xmm_tempb, xmm_one );
|
||||
|
||||
sAR2_Q14_hi_76543210 = _mm_unpackhi_epi64( xmm_tempa, xmm_tempb );
|
||||
sAR2_Q14_lo_76543210 = _mm_unpacklo_epi64( xmm_tempa, xmm_tempb );
|
||||
|
||||
/* prepare 1 in 8 * 16bit */
|
||||
xmm_one = _mm_set1_epi16(1);
|
||||
|
||||
for( i = 0; i < length; i++ )
|
||||
{
|
||||
/* Short-term prediction */
|
||||
__m128i xmm_hi_07, xmm_hi_8F, xmm_lo_07, xmm_lo_8F;
|
||||
|
||||
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
||||
LPC_pred_Q10 = 8; /* silk_RSHIFT( predictLPCOrder, 1 ); */
|
||||
|
||||
/* shift psLPC_Q14 */
|
||||
psLPC_Q14_hi_89ABCDEF = _mm_alignr_epi8( psLPC_Q14_hi_01234567, psLPC_Q14_hi_89ABCDEF, 2 );
|
||||
psLPC_Q14_lo_89ABCDEF = _mm_alignr_epi8( psLPC_Q14_lo_01234567, psLPC_Q14_lo_89ABCDEF, 2 );
|
||||
|
||||
psLPC_Q14_hi_01234567 = _mm_srli_si128( psLPC_Q14_hi_01234567, 2 );
|
||||
psLPC_Q14_lo_01234567 = _mm_srli_si128( psLPC_Q14_lo_01234567, 2 );
|
||||
|
||||
psLPC_Q14_hi_01234567 = _mm_insert_epi16( psLPC_Q14_hi_01234567, (xq_Q14 >> 16), 7 );
|
||||
psLPC_Q14_lo_01234567 = _mm_insert_epi16( psLPC_Q14_lo_01234567, (xq_Q14), 7 );
|
||||
|
||||
/* high part, use pmaddwd, results in 4 32-bit */
|
||||
xmm_hi_07 = _mm_madd_epi16( psLPC_Q14_hi_01234567, a_Q12_01234567 );
|
||||
xmm_hi_8F = _mm_madd_epi16( psLPC_Q14_hi_89ABCDEF, a_Q12_89ABCDEF );
|
||||
|
||||
/* low part, use pmulhw, results in 8 16-bit, note we need simulate unsigned * signed, _mm_srai_epi16(psLPC_Q14_lo_01234567, 15) */
|
||||
xmm_tempa = _mm_cmpgt_epi16( _mm_setzero_si128(), psLPC_Q14_lo_01234567 );
|
||||
xmm_tempb = _mm_cmpgt_epi16( _mm_setzero_si128(), psLPC_Q14_lo_89ABCDEF );
|
||||
|
||||
xmm_tempa = _mm_and_si128( xmm_tempa, a_Q12_01234567 );
|
||||
xmm_tempb = _mm_and_si128( xmm_tempb, a_Q12_89ABCDEF );
|
||||
|
||||
xmm_lo_07 = _mm_mulhi_epi16( psLPC_Q14_lo_01234567, a_Q12_01234567 );
|
||||
xmm_lo_8F = _mm_mulhi_epi16( psLPC_Q14_lo_89ABCDEF, a_Q12_89ABCDEF );
|
||||
|
||||
xmm_lo_07 = _mm_add_epi16( xmm_lo_07, xmm_tempa );
|
||||
xmm_lo_8F = _mm_add_epi16( xmm_lo_8F, xmm_tempb );
|
||||
|
||||
xmm_lo_07 = _mm_madd_epi16( xmm_lo_07, xmm_one );
|
||||
xmm_lo_8F = _mm_madd_epi16( xmm_lo_8F, xmm_one );
|
||||
|
||||
/* accumulate */
|
||||
xmm_hi_07 = _mm_add_epi32( xmm_hi_07, xmm_hi_8F );
|
||||
xmm_lo_07 = _mm_add_epi32( xmm_lo_07, xmm_lo_8F );
|
||||
|
||||
xmm_hi_07 = _mm_add_epi32( xmm_hi_07, xmm_lo_07 );
|
||||
|
||||
xmm_hi_07 = _mm_add_epi32( xmm_hi_07, _mm_unpackhi_epi64(xmm_hi_07, xmm_hi_07 ) );
|
||||
xmm_hi_07 = _mm_add_epi32( xmm_hi_07, _mm_shufflelo_epi16(xmm_hi_07, 0x0E ) );
|
||||
|
||||
LPC_pred_Q10 += _mm_cvtsi128_si32( xmm_hi_07 );
|
||||
|
||||
/* Long-term prediction */
|
||||
if ( opus_likely( signalType == TYPE_VOICED ) ) {
|
||||
/* Unrolled loop */
|
||||
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
||||
LTP_pred_Q13 = 2;
|
||||
{
|
||||
__m128i b_Q14_3210, b_Q14_0123, pred_lag_ptr_0123;
|
||||
|
||||
b_Q14_3210 = OP_CVTEPI16_EPI32_M64( b_Q14 );
|
||||
b_Q14_0123 = _mm_shuffle_epi32( b_Q14_3210, 0x1B );
|
||||
|
||||
/* loaded: [0] [-1] [-2] [-3] */
|
||||
pred_lag_ptr_0123 = _mm_loadu_si128( (__m128i *)(&pred_lag_ptr[ -3 ] ) );
|
||||
/* shuffle to [-3] [-2] [-1] [0] and to new xmm */
|
||||
xmm_tempa = _mm_shuffle_epi32( pred_lag_ptr_0123, 0x1B );
|
||||
/*64-bit multiply, a[2] * b[-2], a[0] * b[0] */
|
||||
xmm_tempa = _mm_mul_epi32( xmm_tempa, b_Q14_3210 );
|
||||
/* right shift 2 bytes (16 bits), zero extended */
|
||||
xmm_tempa = _mm_srli_si128( xmm_tempa, 2 );
|
||||
|
||||
/* a[1] * b[-1], a[3] * b[-3] */
|
||||
pred_lag_ptr_0123 = _mm_mul_epi32( pred_lag_ptr_0123, b_Q14_0123 );
|
||||
pred_lag_ptr_0123 = _mm_srli_si128( pred_lag_ptr_0123, 2 );
|
||||
|
||||
pred_lag_ptr_0123 = _mm_add_epi32( pred_lag_ptr_0123, xmm_tempa );
|
||||
/* equal shift right 8 bytes*/
|
||||
xmm_tempa = _mm_shuffle_epi32( pred_lag_ptr_0123, _MM_SHUFFLE( 0, 0, 3, 2 ) );
|
||||
xmm_tempa = _mm_add_epi32( xmm_tempa, pred_lag_ptr_0123 );
|
||||
|
||||
LTP_pred_Q13 += _mm_cvtsi128_si32( xmm_tempa );
|
||||
|
||||
LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
|
||||
pred_lag_ptr++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Noise shape feedback */
|
||||
NSQ->sAR2_Q14[ 9 ] = NSQ->sAR2_Q14[ 8 ];
|
||||
NSQ->sAR2_Q14[ 8 ] = _mm_cvtsi128_si32( _mm_srli_si128(_mm_unpackhi_epi16( sAR2_Q14_lo_76543210, sAR2_Q14_hi_76543210 ), 12 ) );
|
||||
|
||||
sAR2_Q14_hi_76543210 = _mm_slli_si128( sAR2_Q14_hi_76543210, 2 );
|
||||
sAR2_Q14_lo_76543210 = _mm_slli_si128( sAR2_Q14_lo_76543210, 2 );
|
||||
|
||||
sAR2_Q14_hi_76543210 = _mm_insert_epi16( sAR2_Q14_hi_76543210, (xq_Q14 >> 16), 0 );
|
||||
sAR2_Q14_lo_76543210 = _mm_insert_epi16( sAR2_Q14_lo_76543210, (xq_Q14), 0 );
|
||||
|
||||
/* high part, use pmaddwd, results in 4 32-bit */
|
||||
xmm_hi_07 = _mm_madd_epi16( sAR2_Q14_hi_76543210, AR_shp_Q13_76543210 );
|
||||
|
||||
/* low part, use pmulhw, results in 8 16-bit, note we need simulate unsigned * signed,_mm_srai_epi16(sAR2_Q14_lo_76543210, 15) */
|
||||
xmm_tempa = _mm_cmpgt_epi16( _mm_setzero_si128(), sAR2_Q14_lo_76543210 );
|
||||
xmm_tempa = _mm_and_si128( xmm_tempa, AR_shp_Q13_76543210 );
|
||||
|
||||
xmm_lo_07 = _mm_mulhi_epi16( sAR2_Q14_lo_76543210, AR_shp_Q13_76543210 );
|
||||
xmm_lo_07 = _mm_add_epi16( xmm_lo_07, xmm_tempa );
|
||||
|
||||
xmm_lo_07 = _mm_madd_epi16( xmm_lo_07, xmm_one );
|
||||
|
||||
/* accumulate */
|
||||
xmm_hi_07 = _mm_add_epi32( xmm_hi_07, xmm_lo_07 );
|
||||
|
||||
xmm_hi_07 = _mm_add_epi32( xmm_hi_07, _mm_unpackhi_epi64(xmm_hi_07, xmm_hi_07 ) );
|
||||
xmm_hi_07 = _mm_add_epi32( xmm_hi_07, _mm_shufflelo_epi16(xmm_hi_07, 0x0E ) );
|
||||
|
||||
n_AR_Q12 = 5 + _mm_cvtsi128_si32( xmm_hi_07 );
|
||||
|
||||
n_AR_Q12 = silk_SMLAWB( n_AR_Q12, NSQ->sAR2_Q14[ 8 ], AR_shp_Q13[ 8 ] );
|
||||
n_AR_Q12 = silk_SMLAWB( n_AR_Q12, NSQ->sAR2_Q14[ 9 ], AR_shp_Q13[ 9 ] );
|
||||
|
||||
n_AR_Q12 = silk_LSHIFT32( n_AR_Q12, 1 ); /* Q11 -> Q12 */
|
||||
n_AR_Q12 = silk_SMLAWB( n_AR_Q12, sLF_AR_shp_Q14, Tilt_Q14 );
|
||||
|
||||
n_LF_Q12 = silk_SMULWB( NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 );
|
||||
n_LF_Q12 = silk_SMLAWT( n_LF_Q12, sLF_AR_shp_Q14, LF_shp_Q14 );
|
||||
|
||||
silk_assert( lag > 0 || signalType != TYPE_VOICED );
|
||||
|
||||
/* Combine prediction and noise shaping signals */
|
||||
tmp1 = silk_SUB32( silk_LSHIFT32( LPC_pred_Q10, 2 ), n_AR_Q12 ); /* Q12 */
|
||||
tmp1 = silk_SUB32( tmp1, n_LF_Q12 ); /* Q12 */
|
||||
if( lag > 0 ) {
|
||||
/* Symmetric, packed FIR coefficients */
|
||||
n_LTP_Q13 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
|
||||
n_LTP_Q13 = silk_SMLAWT( n_LTP_Q13, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
|
||||
n_LTP_Q13 = silk_LSHIFT( n_LTP_Q13, 1 );
|
||||
shp_lag_ptr++;
|
||||
|
||||
tmp2 = silk_SUB32( LTP_pred_Q13, n_LTP_Q13 ); /* Q13 */
|
||||
tmp1 = silk_ADD_LSHIFT32( tmp2, tmp1, 1 ); /* Q13 */
|
||||
tmp1 = silk_RSHIFT_ROUND( tmp1, 3 ); /* Q10 */
|
||||
} else {
|
||||
tmp1 = silk_RSHIFT_ROUND( tmp1, 2 ); /* Q10 */
|
||||
}
|
||||
|
||||
r_Q10 = silk_SUB32( x_sc_Q10[ i ], tmp1 ); /* residual error Q10 */
|
||||
|
||||
/* Generate dither */
|
||||
NSQ->rand_seed = silk_RAND( NSQ->rand_seed );
|
||||
|
||||
/* Flip sign depending on dither */
|
||||
tmp2 = -r_Q10;
|
||||
if ( NSQ->rand_seed < 0 ) r_Q10 = tmp2;
|
||||
|
||||
r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
|
||||
|
||||
/* Find two quantization level candidates and measure their rate-distortion */
|
||||
q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
|
||||
q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
|
||||
|
||||
q1_Q10 = table[q1_Q0][0];
|
||||
q2_Q10 = table[q1_Q0][1];
|
||||
|
||||
if (r_Q10 * table[q1_Q0][2] - table[q1_Q0][3] < 0)
|
||||
{
|
||||
q1_Q10 = q2_Q10;
|
||||
}
|
||||
|
||||
pulses[ i ] = (opus_int8)silk_RSHIFT_ROUND( q1_Q10, 10 );
|
||||
|
||||
/* Excitation */
|
||||
exc_Q14 = silk_LSHIFT( q1_Q10, 4 );
|
||||
|
||||
tmp2 = -exc_Q14;
|
||||
if ( NSQ->rand_seed < 0 ) exc_Q14 = tmp2;
|
||||
|
||||
/* Add predictions */
|
||||
LPC_exc_Q14 = silk_ADD_LSHIFT32( exc_Q14, LTP_pred_Q13, 1 );
|
||||
xq_Q14 = silk_ADD_LSHIFT32( LPC_exc_Q14, LPC_pred_Q10, 4 );
|
||||
|
||||
/* Update states */
|
||||
psLPC_Q14++;
|
||||
*psLPC_Q14 = xq_Q14;
|
||||
sLF_AR_shp_Q14 = silk_SUB_LSHIFT32( xq_Q14, n_AR_Q12, 2 );
|
||||
|
||||
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx ] = silk_SUB_LSHIFT32( sLF_AR_shp_Q14, n_LF_Q12, 2 );
|
||||
sLTP_Q15[ NSQ->sLTP_buf_idx ] = silk_LSHIFT( LPC_exc_Q14, 1 );
|
||||
NSQ->sLTP_shp_buf_idx++;
|
||||
NSQ->sLTP_buf_idx++;
|
||||
|
||||
/* Make dither dependent on quantized signal */
|
||||
NSQ->rand_seed = silk_ADD32_ovflw( NSQ->rand_seed, pulses[ i ] );
|
||||
}
|
||||
|
||||
NSQ->sLF_AR_shp_Q14 = sLF_AR_shp_Q14;
|
||||
|
||||
/* Scale XQ back to normal level before saving */
|
||||
psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH ];
|
||||
|
||||
/* write back sAR2_Q14 */
|
||||
xmm_tempa = _mm_unpackhi_epi16( sAR2_Q14_lo_76543210, sAR2_Q14_hi_76543210 );
|
||||
xmm_tempb = _mm_unpacklo_epi16( sAR2_Q14_lo_76543210, sAR2_Q14_hi_76543210 );
|
||||
_mm_storeu_si128( (__m128i *)(&NSQ->sAR2_Q14[ 4 ]), xmm_tempa );
|
||||
_mm_storeu_si128( (__m128i *)(&NSQ->sAR2_Q14[ 0 ]), xmm_tempb );
|
||||
|
||||
/* xq[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psLPC_Q14[ i ], Gain_Q10 ), 8 ) ); */
|
||||
{
|
||||
__m128i xmm_Gain_Q10;
|
||||
__m128i xmm_xq_Q14_3210, xmm_xq_Q14_x3x1, xmm_xq_Q14_7654, xmm_xq_Q14_x7x5;
|
||||
|
||||
/* prepare (1 << 7) in packed 4 32-bits */
|
||||
xmm_tempa = _mm_set1_epi32( (1 << 7) );
|
||||
|
||||
/* prepare Gain_Q10 in packed 4 32-bits */
|
||||
xmm_Gain_Q10 = _mm_set1_epi32( Gain_Q10 );
|
||||
|
||||
/* process xq */
|
||||
for (i = 0; i < length - 7; i += 8)
|
||||
{
|
||||
xmm_xq_Q14_3210 = _mm_loadu_si128( (__m128i *)(&(psLPC_Q14[ i + 0 ] ) ) );
|
||||
xmm_xq_Q14_7654 = _mm_loadu_si128( (__m128i *)(&(psLPC_Q14[ i + 4 ] ) ) );
|
||||
|
||||
/* equal shift right 4 bytes*/
|
||||
xmm_xq_Q14_x3x1 = _mm_shuffle_epi32( xmm_xq_Q14_3210, _MM_SHUFFLE( 0, 3, 2, 1 ) );
|
||||
/* equal shift right 4 bytes*/
|
||||
xmm_xq_Q14_x7x5 = _mm_shuffle_epi32( xmm_xq_Q14_7654, _MM_SHUFFLE( 0, 3, 2, 1 ) );
|
||||
|
||||
xmm_xq_Q14_3210 = _mm_mul_epi32( xmm_xq_Q14_3210, xmm_Gain_Q10 );
|
||||
xmm_xq_Q14_x3x1 = _mm_mul_epi32( xmm_xq_Q14_x3x1, xmm_Gain_Q10 );
|
||||
xmm_xq_Q14_7654 = _mm_mul_epi32( xmm_xq_Q14_7654, xmm_Gain_Q10 );
|
||||
xmm_xq_Q14_x7x5 = _mm_mul_epi32( xmm_xq_Q14_x7x5, xmm_Gain_Q10 );
|
||||
|
||||
xmm_xq_Q14_3210 = _mm_srli_epi64( xmm_xq_Q14_3210, 16 );
|
||||
xmm_xq_Q14_x3x1 = _mm_slli_epi64( xmm_xq_Q14_x3x1, 16 );
|
||||
xmm_xq_Q14_7654 = _mm_srli_epi64( xmm_xq_Q14_7654, 16 );
|
||||
xmm_xq_Q14_x7x5 = _mm_slli_epi64( xmm_xq_Q14_x7x5, 16 );
|
||||
|
||||
xmm_xq_Q14_3210 = _mm_blend_epi16( xmm_xq_Q14_3210, xmm_xq_Q14_x3x1, 0xCC );
|
||||
xmm_xq_Q14_7654 = _mm_blend_epi16( xmm_xq_Q14_7654, xmm_xq_Q14_x7x5, 0xCC );
|
||||
|
||||
/* silk_RSHIFT_ROUND(xq, 8) */
|
||||
xmm_xq_Q14_3210 = _mm_add_epi32( xmm_xq_Q14_3210, xmm_tempa );
|
||||
xmm_xq_Q14_7654 = _mm_add_epi32( xmm_xq_Q14_7654, xmm_tempa );
|
||||
|
||||
xmm_xq_Q14_3210 = _mm_srai_epi32( xmm_xq_Q14_3210, 8 );
|
||||
xmm_xq_Q14_7654 = _mm_srai_epi32( xmm_xq_Q14_7654, 8 );
|
||||
|
||||
/* silk_SAT16 */
|
||||
xmm_xq_Q14_3210 = _mm_packs_epi32( xmm_xq_Q14_3210, xmm_xq_Q14_7654 );
|
||||
|
||||
/* save to xq */
|
||||
_mm_storeu_si128( (__m128i *)(&xq[ i ] ), xmm_xq_Q14_3210 );
|
||||
}
|
||||
}
|
||||
for ( ; i < length; i++)
|
||||
{
|
||||
xq[i] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psLPC_Q14[ i ], Gain_Q10 ), 8 ) );
|
||||
}
|
||||
|
||||
/* Update LPC synth buffer */
|
||||
silk_memcpy( NSQ->sLPC_Q14, &NSQ->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
||||
}
|
||||
|
||||
static OPUS_INLINE void silk_nsq_scale_states_sse4_1(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
const opus_int32 x_Q3[], /* I input in Q3 */
|
||||
opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */
|
||||
const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */
|
||||
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
||||
opus_int subfr, /* I subframe number */
|
||||
const opus_int LTP_scale_Q14, /* I */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
||||
const opus_int signal_type /* I Signal type */
|
||||
)
|
||||
{
|
||||
opus_int i, lag;
|
||||
opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q23;
|
||||
__m128i xmm_inv_gain_Q23, xmm_x_Q3_x2x0, xmm_x_Q3_x3x1;
|
||||
|
||||
lag = pitchL[ subfr ];
|
||||
inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
|
||||
silk_assert( inv_gain_Q31 != 0 );
|
||||
|
||||
/* Calculate gain adjustment factor */
|
||||
if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
|
||||
gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
|
||||
} else {
|
||||
gain_adj_Q16 = (opus_int32)1 << 16;
|
||||
}
|
||||
|
||||
/* Scale input */
|
||||
inv_gain_Q23 = silk_RSHIFT_ROUND( inv_gain_Q31, 8 );
|
||||
|
||||
/* prepare inv_gain_Q23 in packed 4 32-bits */
|
||||
xmm_inv_gain_Q23 = _mm_set1_epi32(inv_gain_Q23);
|
||||
|
||||
for( i = 0; i < psEncC->subfr_length - 3; i += 4 ) {
|
||||
xmm_x_Q3_x2x0 = _mm_loadu_si128( (__m128i *)(&(x_Q3[ i ] ) ) );
|
||||
|
||||
/* equal shift right 4 bytes*/
|
||||
xmm_x_Q3_x3x1 = _mm_shuffle_epi32( xmm_x_Q3_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) );
|
||||
|
||||
xmm_x_Q3_x2x0 = _mm_mul_epi32( xmm_x_Q3_x2x0, xmm_inv_gain_Q23 );
|
||||
xmm_x_Q3_x3x1 = _mm_mul_epi32( xmm_x_Q3_x3x1, xmm_inv_gain_Q23 );
|
||||
|
||||
xmm_x_Q3_x2x0 = _mm_srli_epi64( xmm_x_Q3_x2x0, 16 );
|
||||
xmm_x_Q3_x3x1 = _mm_slli_epi64( xmm_x_Q3_x3x1, 16 );
|
||||
|
||||
xmm_x_Q3_x2x0 = _mm_blend_epi16( xmm_x_Q3_x2x0, xmm_x_Q3_x3x1, 0xCC );
|
||||
|
||||
_mm_storeu_si128( (__m128i *)(&(x_sc_Q10[ i ] ) ), xmm_x_Q3_x2x0 );
|
||||
}
|
||||
|
||||
for( ; i < psEncC->subfr_length; i++ ) {
|
||||
x_sc_Q10[ i ] = silk_SMULWW( x_Q3[ i ], inv_gain_Q23 );
|
||||
}
|
||||
|
||||
/* Save inverse gain */
|
||||
NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
|
||||
|
||||
/* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
|
||||
if( NSQ->rewhite_flag ) {
|
||||
if( subfr == 0 ) {
|
||||
/* Do LTP downscaling */
|
||||
inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
|
||||
}
|
||||
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
||||
silk_assert( i < MAX_FRAME_LENGTH );
|
||||
sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
|
||||
}
|
||||
}
|
||||
|
||||
/* Adjust for changing gain */
|
||||
if( gain_adj_Q16 != (opus_int32)1 << 16 ) {
|
||||
/* Scale long-term shaping state */
|
||||
__m128i xmm_gain_adj_Q16, xmm_sLTP_shp_Q14_x2x0, xmm_sLTP_shp_Q14_x3x1;
|
||||
|
||||
/* prepare gain_adj_Q16 in packed 4 32-bits */
|
||||
xmm_gain_adj_Q16 = _mm_set1_epi32(gain_adj_Q16);
|
||||
|
||||
for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx - 3; i += 4 )
|
||||
{
|
||||
xmm_sLTP_shp_Q14_x2x0 = _mm_loadu_si128( (__m128i *)(&(NSQ->sLTP_shp_Q14[ i ] ) ) );
|
||||
/* equal shift right 4 bytes*/
|
||||
xmm_sLTP_shp_Q14_x3x1 = _mm_shuffle_epi32( xmm_sLTP_shp_Q14_x2x0, _MM_SHUFFLE( 0, 3, 2, 1 ) );
|
||||
|
||||
xmm_sLTP_shp_Q14_x2x0 = _mm_mul_epi32( xmm_sLTP_shp_Q14_x2x0, xmm_gain_adj_Q16 );
|
||||
xmm_sLTP_shp_Q14_x3x1 = _mm_mul_epi32( xmm_sLTP_shp_Q14_x3x1, xmm_gain_adj_Q16 );
|
||||
|
||||
xmm_sLTP_shp_Q14_x2x0 = _mm_srli_epi64( xmm_sLTP_shp_Q14_x2x0, 16 );
|
||||
xmm_sLTP_shp_Q14_x3x1 = _mm_slli_epi64( xmm_sLTP_shp_Q14_x3x1, 16 );
|
||||
|
||||
xmm_sLTP_shp_Q14_x2x0 = _mm_blend_epi16( xmm_sLTP_shp_Q14_x2x0, xmm_sLTP_shp_Q14_x3x1, 0xCC );
|
||||
|
||||
_mm_storeu_si128( (__m128i *)(&(NSQ->sLTP_shp_Q14[ i ] ) ), xmm_sLTP_shp_Q14_x2x0 );
|
||||
}
|
||||
|
||||
for( ; i < NSQ->sLTP_shp_buf_idx; i++ ) {
|
||||
NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
|
||||
}
|
||||
|
||||
/* Scale long-term prediction state */
|
||||
if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
|
||||
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
||||
sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
|
||||
}
|
||||
}
|
||||
|
||||
NSQ->sLF_AR_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q14 );
|
||||
|
||||
/* Scale short-term prediction and shaping states */
|
||||
for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
||||
NSQ->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLPC_Q14[ i ] );
|
||||
}
|
||||
for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
|
||||
NSQ->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* OpenMPT */
|
94
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/SigProc_FIX_sse.h
vendored
Normal file
94
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/SigProc_FIX_sse.h
vendored
Normal file
|
@ -0,0 +1,94 @@
|
|||
/* Copyright (c) 2014, Cisco Systems, INC
|
||||
Written by XiangMingZhu WeiZhou MinPeng YanWang
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef SIGPROC_FIX_SSE_H
|
||||
#define SIGPROC_FIX_SSE_H
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#if defined(OPUS_X86_MAY_HAVE_SSE4_1)
|
||||
void silk_burg_modified_sse4_1(
|
||||
opus_int32 *res_nrg, /* O Residual energy */
|
||||
opus_int *res_nrg_Q, /* O Residual energy Q value */
|
||||
opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
|
||||
const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
|
||||
const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
|
||||
const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
|
||||
const opus_int nb_subfr, /* I Number of subframes stacked in x */
|
||||
const opus_int D, /* I Order */
|
||||
int arch /* I Run-time architecture */
|
||||
);
|
||||
|
||||
#if defined(OPUS_X86_PRESUME_SSE4_1)
|
||||
#define silk_burg_modified(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch) \
|
||||
((void)(arch), silk_burg_modified_sse4_1(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch))
|
||||
|
||||
#else
|
||||
|
||||
extern void (*const SILK_BURG_MODIFIED_IMPL[OPUS_ARCHMASK + 1])(
|
||||
opus_int32 *res_nrg, /* O Residual energy */
|
||||
opus_int *res_nrg_Q, /* O Residual energy Q value */
|
||||
opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
|
||||
const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
|
||||
const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
|
||||
const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
|
||||
const opus_int nb_subfr, /* I Number of subframes stacked in x */
|
||||
const opus_int D, /* I Order */
|
||||
int arch /* I Run-time architecture */);
|
||||
|
||||
# define silk_burg_modified(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch) \
|
||||
((*SILK_BURG_MODIFIED_IMPL[(arch) & OPUS_ARCHMASK])(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch))
|
||||
|
||||
#endif
|
||||
|
||||
opus_int64 silk_inner_prod16_aligned_64_sse4_1(
|
||||
const opus_int16 *inVec1,
|
||||
const opus_int16 *inVec2,
|
||||
const opus_int len
|
||||
);
|
||||
|
||||
|
||||
#if defined(OPUS_X86_PRESUME_SSE4_1)
|
||||
|
||||
#define silk_inner_prod16_aligned_64(inVec1, inVec2, len, arch) \
|
||||
((void)(arch),silk_inner_prod16_aligned_64_sse4_1(inVec1, inVec2, len))
|
||||
|
||||
#else
|
||||
|
||||
extern opus_int64 (*const SILK_INNER_PROD16_ALIGNED_64_IMPL[OPUS_ARCHMASK + 1])(
|
||||
const opus_int16 *inVec1,
|
||||
const opus_int16 *inVec2,
|
||||
const opus_int len);
|
||||
|
||||
# define silk_inner_prod16_aligned_64(inVec1, inVec2, len, arch) \
|
||||
((*SILK_INNER_PROD16_ALIGNED_64_IMPL[(arch) & OPUS_ARCHMASK])(inVec1, inVec2, len))
|
||||
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
281
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/VAD_sse4_1.c
vendored
Normal file
281
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/VAD_sse4_1.c
vendored
Normal file
|
@ -0,0 +1,281 @@
|
|||
/* Copyright (c) 2014, Cisco Systems, INC
|
||||
Written by XiangMingZhu WeiZhou MinPeng YanWang
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include <xmmintrin.h>
|
||||
#include <emmintrin.h>
|
||||
#include <smmintrin.h>
|
||||
|
||||
#include "main.h"
|
||||
#include "stack_alloc.h"
|
||||
|
||||
#if defined(OPUS_X86_MAY_HAVE_SSE4_1) /* OpenMPT */
|
||||
|
||||
/* Weighting factors for tilt measure */
|
||||
static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
|
||||
|
||||
/***************************************/
|
||||
/* Get the speech activity level in Q8 */
|
||||
/***************************************/
|
||||
opus_int silk_VAD_GetSA_Q8_sse4_1( /* O Return value, 0 if success */
|
||||
silk_encoder_state *psEncC, /* I/O Encoder state */
|
||||
const opus_int16 pIn[] /* I PCM input */
|
||||
)
|
||||
{
|
||||
opus_int SA_Q15, pSNR_dB_Q7, input_tilt;
|
||||
opus_int decimated_framelength1, decimated_framelength2;
|
||||
opus_int decimated_framelength;
|
||||
opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
|
||||
opus_int32 sumSquared, smooth_coef_Q16;
|
||||
opus_int16 HPstateTmp;
|
||||
VARDECL( opus_int16, X );
|
||||
opus_int32 Xnrg[ VAD_N_BANDS ];
|
||||
opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
|
||||
opus_int32 speech_nrg, x_tmp;
|
||||
opus_int X_offset[ VAD_N_BANDS ];
|
||||
opus_int ret = 0;
|
||||
silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
|
||||
|
||||
SAVE_STACK;
|
||||
|
||||
/* Safety checks */
|
||||
silk_assert( VAD_N_BANDS == 4 );
|
||||
celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
|
||||
celt_assert( psEncC->frame_length <= 512 );
|
||||
celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
|
||||
|
||||
/***********************/
|
||||
/* Filter and Decimate */
|
||||
/***********************/
|
||||
decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
|
||||
decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
|
||||
decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
|
||||
/* Decimate into 4 bands:
|
||||
0 L 3L L 3L 5L
|
||||
- -- - -- --
|
||||
8 8 2 4 4
|
||||
|
||||
[0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz |
|
||||
|
||||
They're arranged to allow the minimal ( frame_length / 4 ) extra
|
||||
scratch space during the downsampling process */
|
||||
X_offset[ 0 ] = 0;
|
||||
X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
|
||||
X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
|
||||
X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
|
||||
ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
|
||||
|
||||
/* 0-8 kHz to 0-4 kHz and 4-8 kHz */
|
||||
silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ],
|
||||
X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
|
||||
|
||||
/* 0-4 kHz to 0-2 kHz and 2-4 kHz */
|
||||
silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
|
||||
X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
|
||||
|
||||
/* 0-2 kHz to 0-1 kHz and 1-2 kHz */
|
||||
silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
|
||||
X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
|
||||
|
||||
/*********************************************/
|
||||
/* HP filter on lowest band (differentiator) */
|
||||
/*********************************************/
|
||||
X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
|
||||
HPstateTmp = X[ decimated_framelength - 1 ];
|
||||
for( i = decimated_framelength - 1; i > 0; i-- ) {
|
||||
X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 );
|
||||
X[ i ] -= X[ i - 1 ];
|
||||
}
|
||||
X[ 0 ] -= psSilk_VAD->HPstate;
|
||||
psSilk_VAD->HPstate = HPstateTmp;
|
||||
|
||||
/*************************************/
|
||||
/* Calculate the energy in each band */
|
||||
/*************************************/
|
||||
for( b = 0; b < VAD_N_BANDS; b++ ) {
|
||||
/* Find the decimated framelength in the non-uniformly divided bands */
|
||||
decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
|
||||
|
||||
/* Split length into subframe lengths */
|
||||
dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
|
||||
dec_subframe_offset = 0;
|
||||
|
||||
/* Compute energy per sub-frame */
|
||||
/* initialize with summed energy of last subframe */
|
||||
Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
|
||||
for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
|
||||
__m128i xmm_X, xmm_acc;
|
||||
sumSquared = 0;
|
||||
|
||||
xmm_acc = _mm_setzero_si128();
|
||||
|
||||
for( i = 0; i < dec_subframe_length - 7; i += 8 )
|
||||
{
|
||||
xmm_X = _mm_loadu_si128( (__m128i *)&(X[ X_offset[ b ] + i + dec_subframe_offset ] ) );
|
||||
xmm_X = _mm_srai_epi16( xmm_X, 3 );
|
||||
xmm_X = _mm_madd_epi16( xmm_X, xmm_X );
|
||||
xmm_acc = _mm_add_epi32( xmm_acc, xmm_X );
|
||||
}
|
||||
|
||||
xmm_acc = _mm_add_epi32( xmm_acc, _mm_unpackhi_epi64( xmm_acc, xmm_acc ) );
|
||||
xmm_acc = _mm_add_epi32( xmm_acc, _mm_shufflelo_epi16( xmm_acc, 0x0E ) );
|
||||
|
||||
sumSquared += _mm_cvtsi128_si32( xmm_acc );
|
||||
|
||||
for( ; i < dec_subframe_length; i++ ) {
|
||||
/* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */
|
||||
/* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */
|
||||
x_tmp = silk_RSHIFT(
|
||||
X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
|
||||
sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
|
||||
|
||||
/* Safety check */
|
||||
silk_assert( sumSquared >= 0 );
|
||||
}
|
||||
|
||||
/* Add/saturate summed energy of current subframe */
|
||||
if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
|
||||
Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
|
||||
} else {
|
||||
/* Look-ahead subframe */
|
||||
Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
|
||||
}
|
||||
|
||||
dec_subframe_offset += dec_subframe_length;
|
||||
}
|
||||
psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
|
||||
}
|
||||
|
||||
/********************/
|
||||
/* Noise estimation */
|
||||
/********************/
|
||||
silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
|
||||
|
||||
/***********************************************/
|
||||
/* Signal-plus-noise to noise ratio estimation */
|
||||
/***********************************************/
|
||||
sumSquared = 0;
|
||||
input_tilt = 0;
|
||||
for( b = 0; b < VAD_N_BANDS; b++ ) {
|
||||
speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
|
||||
if( speech_nrg > 0 ) {
|
||||
/* Divide, with sufficient resolution */
|
||||
if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
|
||||
NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
|
||||
} else {
|
||||
NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
|
||||
}
|
||||
|
||||
/* Convert to log domain */
|
||||
SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
|
||||
|
||||
/* Sum-of-squares */
|
||||
sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */
|
||||
|
||||
/* Tilt measure */
|
||||
if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
|
||||
/* Scale down SNR value for small subband speech energies */
|
||||
SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
|
||||
}
|
||||
input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
|
||||
} else {
|
||||
NrgToNoiseRatio_Q8[ b ] = 256;
|
||||
}
|
||||
}
|
||||
|
||||
/* Mean-of-squares */
|
||||
sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
|
||||
|
||||
/* Root-mean-square approximation, scale to dBs, and write to output pointer */
|
||||
pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
|
||||
|
||||
/*********************************/
|
||||
/* Speech Probability Estimation */
|
||||
/*********************************/
|
||||
SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
|
||||
|
||||
/**************************/
|
||||
/* Frequency Tilt Measure */
|
||||
/**************************/
|
||||
psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
|
||||
|
||||
/**************************************************/
|
||||
/* Scale the sigmoid output based on power levels */
|
||||
/**************************************************/
|
||||
speech_nrg = 0;
|
||||
for( b = 0; b < VAD_N_BANDS; b++ ) {
|
||||
/* Accumulate signal-without-noise energies, higher frequency bands have more weight */
|
||||
speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
|
||||
}
|
||||
|
||||
/* Power scaling */
|
||||
if( speech_nrg <= 0 ) {
|
||||
SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
|
||||
} else if( speech_nrg < 32768 ) {
|
||||
if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
|
||||
speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 16 );
|
||||
} else {
|
||||
speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 15 );
|
||||
}
|
||||
|
||||
/* square-root */
|
||||
speech_nrg = silk_SQRT_APPROX( speech_nrg );
|
||||
SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
|
||||
}
|
||||
|
||||
/* Copy the resulting speech activity in Q8 */
|
||||
psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
|
||||
|
||||
/***********************************/
|
||||
/* Energy Level and SNR estimation */
|
||||
/***********************************/
|
||||
/* Smoothing coefficient */
|
||||
smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
|
||||
|
||||
if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
|
||||
smooth_coef_Q16 >>= 1;
|
||||
}
|
||||
|
||||
for( b = 0; b < VAD_N_BANDS; b++ ) {
|
||||
/* compute smoothed energy-to-noise ratio per band */
|
||||
psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
|
||||
NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
|
||||
|
||||
/* signal to noise ratio in dB per band */
|
||||
SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
|
||||
/* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
|
||||
psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
|
||||
}
|
||||
|
||||
RESTORE_STACK;
|
||||
return( ret );
|
||||
}
|
||||
|
||||
#endif /* OpenMPT */
|
146
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/VQ_WMat_EC_sse4_1.c
vendored
Normal file
146
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/VQ_WMat_EC_sse4_1.c
vendored
Normal file
|
@ -0,0 +1,146 @@
|
|||
/* Copyright (c) 2014, Cisco Systems, INC
|
||||
Written by XiangMingZhu WeiZhou MinPeng YanWang
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#if defined(OPUS_X86_MAY_HAVE_SSE4_1) /* OpenMPT */
|
||||
|
||||
#include <xmmintrin.h>
|
||||
#include <emmintrin.h>
|
||||
#include <smmintrin.h>
|
||||
#include "main.h"
|
||||
#include "celt/x86/x86cpu.h"
|
||||
|
||||
/* Entropy constrained matrix-weighted VQ, hard-coded to 5-element vectors, for a single input data vector */
|
||||
void silk_VQ_WMat_EC_sse4_1(
|
||||
opus_int8 *ind, /* O index of best codebook vector */
|
||||
opus_int32 *rate_dist_Q14, /* O best weighted quant error + mu * rate */
|
||||
opus_int *gain_Q7, /* O sum of absolute LTP coefficients */
|
||||
const opus_int16 *in_Q14, /* I input vector to be quantized */
|
||||
const opus_int32 *W_Q18, /* I weighting matrix */
|
||||
const opus_int8 *cb_Q7, /* I codebook */
|
||||
const opus_uint8 *cb_gain_Q7, /* I codebook effective gain */
|
||||
const opus_uint8 *cl_Q5, /* I code length for each codebook vector */
|
||||
const opus_int mu_Q9, /* I tradeoff betw. weighted error and rate */
|
||||
const opus_int32 max_gain_Q7, /* I maximum sum of absolute LTP coefficients */
|
||||
opus_int L /* I number of vectors in codebook */
|
||||
)
|
||||
{
|
||||
opus_int k, gain_tmp_Q7;
|
||||
const opus_int8 *cb_row_Q7;
|
||||
opus_int16 diff_Q14[ 5 ];
|
||||
opus_int32 sum1_Q14, sum2_Q16;
|
||||
|
||||
__m128i C_tmp1, C_tmp2, C_tmp3, C_tmp4, C_tmp5;
|
||||
/* Loop over codebook */
|
||||
*rate_dist_Q14 = silk_int32_MAX;
|
||||
cb_row_Q7 = cb_Q7;
|
||||
for( k = 0; k < L; k++ ) {
|
||||
gain_tmp_Q7 = cb_gain_Q7[k];
|
||||
|
||||
diff_Q14[ 0 ] = in_Q14[ 0 ] - silk_LSHIFT( cb_row_Q7[ 0 ], 7 );
|
||||
|
||||
C_tmp1 = OP_CVTEPI16_EPI32_M64( &in_Q14[ 1 ] );
|
||||
C_tmp2 = OP_CVTEPI8_EPI32_M32( &cb_row_Q7[ 1 ] );
|
||||
C_tmp2 = _mm_slli_epi32( C_tmp2, 7 );
|
||||
C_tmp1 = _mm_sub_epi32( C_tmp1, C_tmp2 );
|
||||
|
||||
diff_Q14[ 1 ] = _mm_extract_epi16( C_tmp1, 0 );
|
||||
diff_Q14[ 2 ] = _mm_extract_epi16( C_tmp1, 2 );
|
||||
diff_Q14[ 3 ] = _mm_extract_epi16( C_tmp1, 4 );
|
||||
diff_Q14[ 4 ] = _mm_extract_epi16( C_tmp1, 6 );
|
||||
|
||||
/* Weighted rate */
|
||||
sum1_Q14 = silk_SMULBB( mu_Q9, cl_Q5[ k ] );
|
||||
|
||||
/* Penalty for too large gain */
|
||||
sum1_Q14 = silk_ADD_LSHIFT32( sum1_Q14, silk_max( silk_SUB32( gain_tmp_Q7, max_gain_Q7 ), 0 ), 10 );
|
||||
|
||||
silk_assert( sum1_Q14 >= 0 );
|
||||
|
||||
/* first row of W_Q18 */
|
||||
C_tmp3 = _mm_loadu_si128( (__m128i *)(&W_Q18[ 1 ] ) );
|
||||
C_tmp4 = _mm_mul_epi32( C_tmp3, C_tmp1 );
|
||||
C_tmp4 = _mm_srli_si128( C_tmp4, 2 );
|
||||
|
||||
C_tmp1 = _mm_shuffle_epi32( C_tmp1, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* shift right 4 bytes */
|
||||
C_tmp3 = _mm_shuffle_epi32( C_tmp3, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* shift right 4 bytes */
|
||||
|
||||
C_tmp5 = _mm_mul_epi32( C_tmp3, C_tmp1 );
|
||||
C_tmp5 = _mm_srli_si128( C_tmp5, 2 );
|
||||
|
||||
C_tmp5 = _mm_add_epi32( C_tmp4, C_tmp5 );
|
||||
C_tmp5 = _mm_slli_epi32( C_tmp5, 1 );
|
||||
|
||||
C_tmp5 = _mm_add_epi32( C_tmp5, _mm_shuffle_epi32( C_tmp5, _MM_SHUFFLE( 0, 0, 0, 2 ) ) );
|
||||
sum2_Q16 = _mm_cvtsi128_si32( C_tmp5 );
|
||||
|
||||
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 0 ], diff_Q14[ 0 ] );
|
||||
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 0 ] );
|
||||
|
||||
/* second row of W_Q18 */
|
||||
sum2_Q16 = silk_SMULWB( W_Q18[ 7 ], diff_Q14[ 2 ] );
|
||||
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 8 ], diff_Q14[ 3 ] );
|
||||
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 9 ], diff_Q14[ 4 ] );
|
||||
sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
|
||||
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 6 ], diff_Q14[ 1 ] );
|
||||
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 1 ] );
|
||||
|
||||
/* third row of W_Q18 */
|
||||
sum2_Q16 = silk_SMULWB( W_Q18[ 13 ], diff_Q14[ 3 ] );
|
||||
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 14 ], diff_Q14[ 4 ] );
|
||||
sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
|
||||
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 12 ], diff_Q14[ 2 ] );
|
||||
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 2 ] );
|
||||
|
||||
/* fourth row of W_Q18 */
|
||||
sum2_Q16 = silk_SMULWB( W_Q18[ 19 ], diff_Q14[ 4 ] );
|
||||
sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
|
||||
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 18 ], diff_Q14[ 3 ] );
|
||||
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 3 ] );
|
||||
|
||||
/* last row of W_Q18 */
|
||||
sum2_Q16 = silk_SMULWB( W_Q18[ 24 ], diff_Q14[ 4 ] );
|
||||
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 4 ] );
|
||||
|
||||
silk_assert( sum1_Q14 >= 0 );
|
||||
|
||||
/* find best */
|
||||
if( sum1_Q14 < *rate_dist_Q14 ) {
|
||||
*rate_dist_Q14 = sum1_Q14;
|
||||
*ind = (opus_int8)k;
|
||||
*gain_Q7 = gain_tmp_Q7;
|
||||
}
|
||||
|
||||
/* Go to next cbk vector */
|
||||
cb_row_Q7 += LTP_ORDER;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* OpenMPT */
|
248
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/main_sse.h
vendored
Normal file
248
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/main_sse.h
vendored
Normal file
|
@ -0,0 +1,248 @@
|
|||
/* Copyright (c) 2014, Cisco Systems, INC
|
||||
Written by XiangMingZhu WeiZhou MinPeng YanWang
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef MAIN_SSE_H
|
||||
#define MAIN_SSE_H
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
# if defined(OPUS_X86_MAY_HAVE_SSE4_1)
|
||||
|
||||
#if 0 /* FIXME: SSE disabled until silk_VQ_WMat_EC_sse4_1() gets updated. */
|
||||
# define OVERRIDE_silk_VQ_WMat_EC
|
||||
|
||||
void silk_VQ_WMat_EC_sse4_1(
|
||||
opus_int8 *ind, /* O index of best codebook vector */
|
||||
opus_int32 *rate_dist_Q14, /* O best weighted quant error + mu * rate */
|
||||
opus_int *gain_Q7, /* O sum of absolute LTP coefficients */
|
||||
const opus_int16 *in_Q14, /* I input vector to be quantized */
|
||||
const opus_int32 *W_Q18, /* I weighting matrix */
|
||||
const opus_int8 *cb_Q7, /* I codebook */
|
||||
const opus_uint8 *cb_gain_Q7, /* I codebook effective gain */
|
||||
const opus_uint8 *cl_Q5, /* I code length for each codebook vector */
|
||||
const opus_int mu_Q9, /* I tradeoff betw. weighted error and rate */
|
||||
const opus_int32 max_gain_Q7, /* I maximum sum of absolute LTP coefficients */
|
||||
opus_int L /* I number of vectors in codebook */
|
||||
);
|
||||
|
||||
#if defined OPUS_X86_PRESUME_SSE4_1
|
||||
|
||||
#define silk_VQ_WMat_EC(ind, rate_dist_Q14, gain_Q7, in_Q14, W_Q18, cb_Q7, cb_gain_Q7, cl_Q5, \
|
||||
mu_Q9, max_gain_Q7, L, arch) \
|
||||
((void)(arch),silk_VQ_WMat_EC_sse4_1(ind, rate_dist_Q14, gain_Q7, in_Q14, W_Q18, cb_Q7, cb_gain_Q7, cl_Q5, \
|
||||
mu_Q9, max_gain_Q7, L))
|
||||
|
||||
#else
|
||||
|
||||
extern void (*const SILK_VQ_WMAT_EC_IMPL[OPUS_ARCHMASK + 1])(
|
||||
opus_int8 *ind, /* O index of best codebook vector */
|
||||
opus_int32 *rate_dist_Q14, /* O best weighted quant error + mu * rate */
|
||||
opus_int *gain_Q7, /* O sum of absolute LTP coefficients */
|
||||
const opus_int16 *in_Q14, /* I input vector to be quantized */
|
||||
const opus_int32 *W_Q18, /* I weighting matrix */
|
||||
const opus_int8 *cb_Q7, /* I codebook */
|
||||
const opus_uint8 *cb_gain_Q7, /* I codebook effective gain */
|
||||
const opus_uint8 *cl_Q5, /* I code length for each codebook vector */
|
||||
const opus_int mu_Q9, /* I tradeoff betw. weighted error and rate */
|
||||
const opus_int32 max_gain_Q7, /* I maximum sum of absolute LTP coefficients */
|
||||
opus_int L /* I number of vectors in codebook */
|
||||
);
|
||||
|
||||
# define silk_VQ_WMat_EC(ind, rate_dist_Q14, gain_Q7, in_Q14, W_Q18, cb_Q7, cb_gain_Q7, cl_Q5, \
|
||||
mu_Q9, max_gain_Q7, L, arch) \
|
||||
((*SILK_VQ_WMAT_EC_IMPL[(arch) & OPUS_ARCHMASK])(ind, rate_dist_Q14, gain_Q7, in_Q14, W_Q18, cb_Q7, cb_gain_Q7, cl_Q5, \
|
||||
mu_Q9, max_gain_Q7, L))
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if 0 /* FIXME: SSE disabled until the NSQ code gets updated. */
|
||||
# define OVERRIDE_silk_NSQ
|
||||
|
||||
void silk_NSQ_sse4_1(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
||||
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
||||
opus_int8 pulses[], /* O Quantized pulse signal */
|
||||
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
||||
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
||||
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
||||
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
||||
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
||||
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
||||
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
||||
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
||||
);
|
||||
|
||||
#if defined OPUS_X86_PRESUME_SSE4_1
|
||||
|
||||
#define silk_NSQ(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \
|
||||
HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14, arch) \
|
||||
((void)(arch),silk_NSQ_sse4_1(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \
|
||||
HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14))
|
||||
|
||||
#else
|
||||
|
||||
extern void (*const SILK_NSQ_IMPL[OPUS_ARCHMASK + 1])(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
||||
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
||||
opus_int8 pulses[], /* O Quantized pulse signal */
|
||||
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
||||
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
||||
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
||||
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
||||
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
||||
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
||||
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
||||
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
||||
);
|
||||
|
||||
# define silk_NSQ(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \
|
||||
HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14, arch) \
|
||||
((*SILK_NSQ_IMPL[(arch) & OPUS_ARCHMASK])(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \
|
||||
HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14))
|
||||
|
||||
#endif
|
||||
|
||||
# define OVERRIDE_silk_NSQ_del_dec
|
||||
|
||||
void silk_NSQ_del_dec_sse4_1(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
||||
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
||||
opus_int8 pulses[], /* O Quantized pulse signal */
|
||||
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
||||
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
||||
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
||||
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
||||
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
||||
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
||||
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
||||
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
||||
);
|
||||
|
||||
#if defined OPUS_X86_PRESUME_SSE4_1
|
||||
|
||||
#define silk_NSQ_del_dec(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \
|
||||
HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14, arch) \
|
||||
((void)(arch),silk_NSQ_del_dec_sse4_1(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \
|
||||
HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14))
|
||||
|
||||
#else
|
||||
|
||||
extern void (*const SILK_NSQ_DEL_DEC_IMPL[OPUS_ARCHMASK + 1])(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
||||
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
||||
opus_int8 pulses[], /* O Quantized pulse signal */
|
||||
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
||||
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
||||
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
||||
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
||||
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
||||
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
||||
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
||||
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
||||
);
|
||||
|
||||
# define silk_NSQ_del_dec(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \
|
||||
HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14, arch) \
|
||||
((*SILK_NSQ_DEL_DEC_IMPL[(arch) & OPUS_ARCHMASK])(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \
|
||||
HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14))
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
void silk_noise_shape_quantizer(
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
opus_int signalType, /* I Signal type */
|
||||
const opus_int32 x_sc_Q10[], /* I */
|
||||
opus_int8 pulses[], /* O */
|
||||
opus_int16 xq[], /* O */
|
||||
opus_int32 sLTP_Q15[], /* I/O LTP state */
|
||||
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
||||
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
||||
const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
|
||||
opus_int lag, /* I Pitch lag */
|
||||
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
||||
opus_int Tilt_Q14, /* I Spectral tilt */
|
||||
opus_int32 LF_shp_Q14, /* I */
|
||||
opus_int32 Gain_Q16, /* I */
|
||||
opus_int Lambda_Q10, /* I */
|
||||
opus_int offset_Q10, /* I */
|
||||
opus_int length, /* I Input length */
|
||||
opus_int shapingLPCOrder, /* I Noise shaping AR filter order */
|
||||
opus_int predictLPCOrder, /* I Prediction filter order */
|
||||
int arch /* I Architecture */
|
||||
);
|
||||
|
||||
/**************************/
|
||||
/* Noise level estimation */
|
||||
/**************************/
|
||||
void silk_VAD_GetNoiseLevels(
|
||||
const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */
|
||||
silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
|
||||
);
|
||||
|
||||
# define OVERRIDE_silk_VAD_GetSA_Q8
|
||||
|
||||
opus_int silk_VAD_GetSA_Q8_sse4_1(
|
||||
silk_encoder_state *psEnC,
|
||||
const opus_int16 pIn[]
|
||||
);
|
||||
|
||||
#if defined(OPUS_X86_PRESUME_SSE4_1)
|
||||
#define silk_VAD_GetSA_Q8(psEnC, pIn, arch) ((void)(arch),silk_VAD_GetSA_Q8_sse4_1(psEnC, pIn))
|
||||
|
||||
#else
|
||||
|
||||
# define silk_VAD_GetSA_Q8(psEnC, pIn, arch) \
|
||||
((*SILK_VAD_GETSA_Q8_IMPL[(arch) & OPUS_ARCHMASK])(psEnC, pIn))
|
||||
|
||||
extern opus_int (*const SILK_VAD_GETSA_Q8_IMPL[OPUS_ARCHMASK + 1])(
|
||||
silk_encoder_state *psEnC,
|
||||
const opus_int16 pIn[]);
|
||||
|
||||
#endif
|
||||
|
||||
# endif
|
||||
#endif
|
164
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/x86_silk_map.c
vendored
Normal file
164
Src/external_dependencies/openmpt-trunk/include/opus/silk/x86/x86_silk_map.c
vendored
Normal file
|
@ -0,0 +1,164 @@
|
|||
/* Copyright (c) 2014, Cisco Systems, INC
|
||||
Written by XiangMingZhu WeiZhou MinPeng YanWang
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#if defined(HAVE_CONFIG_H)
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include "celt/x86/x86cpu.h"
|
||||
#include "structs.h"
|
||||
#include "SigProc_FIX.h"
|
||||
#include "pitch.h"
|
||||
#include "main.h"
|
||||
|
||||
#if !defined(OPUS_X86_PRESUME_SSE4_1)
|
||||
|
||||
#if defined(FIXED_POINT)
|
||||
|
||||
#include "fixed/main_FIX.h"
|
||||
|
||||
opus_int64 (*const SILK_INNER_PROD16_ALIGNED_64_IMPL[ OPUS_ARCHMASK + 1 ] )(
|
||||
const opus_int16 *inVec1,
|
||||
const opus_int16 *inVec2,
|
||||
const opus_int len
|
||||
) = {
|
||||
silk_inner_prod16_aligned_64_c, /* non-sse */
|
||||
silk_inner_prod16_aligned_64_c,
|
||||
silk_inner_prod16_aligned_64_c,
|
||||
MAY_HAVE_SSE4_1( silk_inner_prod16_aligned_64 ), /* sse4.1 */
|
||||
MAY_HAVE_SSE4_1( silk_inner_prod16_aligned_64 ) /* avx */
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
opus_int (*const SILK_VAD_GETSA_Q8_IMPL[ OPUS_ARCHMASK + 1 ] )(
|
||||
silk_encoder_state *psEncC,
|
||||
const opus_int16 pIn[]
|
||||
) = {
|
||||
silk_VAD_GetSA_Q8_c, /* non-sse */
|
||||
silk_VAD_GetSA_Q8_c,
|
||||
silk_VAD_GetSA_Q8_c,
|
||||
MAY_HAVE_SSE4_1( silk_VAD_GetSA_Q8 ), /* sse4.1 */
|
||||
MAY_HAVE_SSE4_1( silk_VAD_GetSA_Q8 ) /* avx */
|
||||
};
|
||||
|
||||
#if 0 /* FIXME: SSE disabled until the NSQ code gets updated. */
|
||||
void (*const SILK_NSQ_IMPL[ OPUS_ARCHMASK + 1 ] )(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
||||
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
||||
opus_int8 pulses[], /* O Quantized pulse signal */
|
||||
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
||||
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
||||
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
||||
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
||||
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
||||
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
||||
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
||||
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
||||
) = {
|
||||
silk_NSQ_c, /* non-sse */
|
||||
silk_NSQ_c,
|
||||
silk_NSQ_c,
|
||||
MAY_HAVE_SSE4_1( silk_NSQ ), /* sse4.1 */
|
||||
MAY_HAVE_SSE4_1( silk_NSQ ) /* avx */
|
||||
};
|
||||
#endif
|
||||
|
||||
#if 0 /* FIXME: SSE disabled until silk_VQ_WMat_EC_sse4_1() gets updated. */
|
||||
void (*const SILK_VQ_WMAT_EC_IMPL[ OPUS_ARCHMASK + 1 ] )(
|
||||
opus_int8 *ind, /* O index of best codebook vector */
|
||||
opus_int32 *rate_dist_Q14, /* O best weighted quant error + mu * rate */
|
||||
opus_int *gain_Q7, /* O sum of absolute LTP coefficients */
|
||||
const opus_int16 *in_Q14, /* I input vector to be quantized */
|
||||
const opus_int32 *W_Q18, /* I weighting matrix */
|
||||
const opus_int8 *cb_Q7, /* I codebook */
|
||||
const opus_uint8 *cb_gain_Q7, /* I codebook effective gain */
|
||||
const opus_uint8 *cl_Q5, /* I code length for each codebook vector */
|
||||
const opus_int mu_Q9, /* I tradeoff betw. weighted error and rate */
|
||||
const opus_int32 max_gain_Q7, /* I maximum sum of absolute LTP coefficients */
|
||||
opus_int L /* I number of vectors in codebook */
|
||||
) = {
|
||||
silk_VQ_WMat_EC_c, /* non-sse */
|
||||
silk_VQ_WMat_EC_c,
|
||||
silk_VQ_WMat_EC_c,
|
||||
MAY_HAVE_SSE4_1( silk_VQ_WMat_EC ), /* sse4.1 */
|
||||
MAY_HAVE_SSE4_1( silk_VQ_WMat_EC ) /* avx */
|
||||
};
|
||||
#endif
|
||||
|
||||
#if 0 /* FIXME: SSE disabled until the NSQ code gets updated. */
|
||||
void (*const SILK_NSQ_DEL_DEC_IMPL[ OPUS_ARCHMASK + 1 ] )(
|
||||
const silk_encoder_state *psEncC, /* I Encoder State */
|
||||
silk_nsq_state *NSQ, /* I/O NSQ state */
|
||||
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
||||
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
||||
opus_int8 pulses[], /* O Quantized pulse signal */
|
||||
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
||||
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
||||
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
||||
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
||||
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
||||
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
||||
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
||||
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
||||
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
||||
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
||||
) = {
|
||||
silk_NSQ_del_dec_c, /* non-sse */
|
||||
silk_NSQ_del_dec_c,
|
||||
silk_NSQ_del_dec_c,
|
||||
MAY_HAVE_SSE4_1( silk_NSQ_del_dec ), /* sse4.1 */
|
||||
MAY_HAVE_SSE4_1( silk_NSQ_del_dec ) /* avx */
|
||||
};
|
||||
#endif
|
||||
|
||||
#if defined(FIXED_POINT)
|
||||
|
||||
void (*const SILK_BURG_MODIFIED_IMPL[ OPUS_ARCHMASK + 1 ] )(
|
||||
opus_int32 *res_nrg, /* O Residual energy */
|
||||
opus_int *res_nrg_Q, /* O Residual energy Q value */
|
||||
opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
|
||||
const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
|
||||
const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
|
||||
const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
|
||||
const opus_int nb_subfr, /* I Number of subframes stacked in x */
|
||||
const opus_int D, /* I Order */
|
||||
int arch /* I Run-time architecture */
|
||||
) = {
|
||||
silk_burg_modified_c, /* non-sse */
|
||||
silk_burg_modified_c,
|
||||
silk_burg_modified_c,
|
||||
MAY_HAVE_SSE4_1( silk_burg_modified ), /* sse4.1 */
|
||||
MAY_HAVE_SSE4_1( silk_burg_modified ) /* avx */
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue