Initial community commit
This commit is contained in:
parent
537bcbc862
commit
fc06254474
16440 changed files with 4239995 additions and 2 deletions
361
Src/nu/sort.cpp
Normal file
361
Src/nu/sort.cpp
Normal file
|
@ -0,0 +1,361 @@
|
|||
#include <bfc/platform/types.h>
|
||||
#include "sort.h"
|
||||
#include <assert.h>
|
||||
/***
|
||||
*qsort.c - quicksort algorithm; qsort() library function for sorting arrays
|
||||
*
|
||||
* Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
*
|
||||
*Purpose:
|
||||
* To implement the qsort() routine for sorting arrays.
|
||||
*
|
||||
*******************************************************************************/
|
||||
|
||||
/* Always compile this module for speed, not size */
|
||||
#pragma optimize("t", on)
|
||||
|
||||
/* prototypes for local routines */
|
||||
static void shortsort(uint8_t *lo, uint8_t *hi, size_t width, const void *context,
|
||||
int (__fastcall *comp)(const void *, const void *, const void *));
|
||||
static void swap(uint8_t *p, uint8_t *q, size_t width);
|
||||
|
||||
/* this parameter defines the cutoff between using quick sort and
|
||||
insertion sort for arrays; arrays with lengths shorter or equal to the
|
||||
below value use insertion sort */
|
||||
|
||||
#define CUTOFF 8 /* testing shows that this is good value */
|
||||
|
||||
/***
|
||||
*qsort(base, num, wid, context, comp) - quicksort function for sorting arrays
|
||||
*
|
||||
*Purpose:
|
||||
* quicksort the array of elements
|
||||
* side effects: sorts in place
|
||||
* maximum array size is number of elements times size of elements,
|
||||
* but is limited by the virtual address space of the processor
|
||||
*
|
||||
*Entry:
|
||||
* char *base = pointer to base of array
|
||||
* size_t num = number of elements in the array
|
||||
* size_t width = width in bytes of each array element
|
||||
* int (*comp)() = pointer to function returning analog of strcmp for
|
||||
* strings, but supplied by user for comparing the array elements.
|
||||
* it accepts 2 pointers to elements and returns neg if 1<2, 0 if
|
||||
* 1=2, pos if 1>2.
|
||||
*
|
||||
*Exit:
|
||||
* returns void
|
||||
*
|
||||
*Exceptions:
|
||||
*
|
||||
*******************************************************************************/
|
||||
|
||||
/* sort the array between lo and hi (inclusive) */
|
||||
|
||||
#define STKSIZ (8*sizeof(void*) - 2)
|
||||
|
||||
void __cdecl nu::qsort (
|
||||
void *base,
|
||||
size_t num,
|
||||
size_t width,
|
||||
const void *context,
|
||||
int (__fastcall *comp)(const void *, const void *, const void *)
|
||||
)
|
||||
{
|
||||
/* Note: the number of stack entries required is no more than
|
||||
1 + log2(num), so 30 is sufficient for any array */
|
||||
uint8_t *lo, *hi; /* ends of sub-array currently sorting */
|
||||
uint8_t *mid; /* points to middle of subarray */
|
||||
uint8_t *loguy, *higuy; /* traveling pointers for partition step */
|
||||
size_t size; /* size of the sub-array */
|
||||
uint8_t *lostk[STKSIZ] = {0}, *histk[STKSIZ] = {0};
|
||||
int stkptr; /* stack for saving sub-array to be processed */
|
||||
|
||||
assert((width % sizeof(void *)) == 0);
|
||||
if (num < 2 || width == 0)
|
||||
return; /* nothing to do */
|
||||
|
||||
stkptr = 0; /* initialize stack */
|
||||
|
||||
lo = static_cast<uint8_t *>(base);
|
||||
hi = (uint8_t *)base + width * (num-1); /* initialize limits */
|
||||
|
||||
/* this entry point is for pseudo-recursion calling: setting
|
||||
lo and hi and jumping to here is like recursion, but stkptr is
|
||||
preserved, locals aren't, so we preserve stuff on the stack */
|
||||
recurse:
|
||||
|
||||
size = (hi - lo) / width + 1; /* number of el's to sort */
|
||||
|
||||
/* below a certain size, it is faster to use a O(n^2) sorting method */
|
||||
if (size <= CUTOFF) {
|
||||
shortsort(lo, hi, width, context, comp);
|
||||
}
|
||||
else {
|
||||
/* First we pick a partitioning element. The efficiency of the
|
||||
algorithm demands that we find one that is approximately the median
|
||||
of the values, but also that we select one fast. We choose the
|
||||
median of the first, middle, and last elements, to avoid bad
|
||||
performance in the face of already sorted data, or data that is made
|
||||
up of multiple sorted runs appended together. Testing shows that a
|
||||
median-of-three algorithm provides better performance than simply
|
||||
picking the middle element for the latter case. */
|
||||
|
||||
mid = lo + (size / 2) * width; /* find middle element */
|
||||
|
||||
/* Sort the first, middle, last elements into order */
|
||||
if (comp(lo, mid, context) > 0) {
|
||||
swap(lo, mid, width);
|
||||
}
|
||||
if (comp(lo, hi, context) > 0) {
|
||||
swap(lo, hi, width);
|
||||
}
|
||||
if (comp(mid, hi, context) > 0) {
|
||||
swap(mid, hi, width);
|
||||
}
|
||||
|
||||
/* We now wish to partition the array into three pieces, one consisting
|
||||
of elements <= partition element, one of elements equal to the
|
||||
partition element, and one of elements > than it. This is done
|
||||
below; comments indicate conditions established at every step. */
|
||||
|
||||
loguy = lo;
|
||||
higuy = hi;
|
||||
|
||||
/* Note that higuy decreases and loguy increases on every iteration,
|
||||
so loop must terminate. */
|
||||
for (;;) {
|
||||
/* lo <= loguy < hi, lo < higuy <= hi,
|
||||
A[i] <= A[mid] for lo <= i <= loguy,
|
||||
A[i] > A[mid] for higuy <= i < hi,
|
||||
A[hi] >= A[mid] */
|
||||
|
||||
/* The doubled loop is to avoid calling comp(mid,mid), since some
|
||||
existing comparison funcs don't work when passed the same
|
||||
value for both pointers. */
|
||||
|
||||
if (mid > loguy) {
|
||||
do {
|
||||
loguy += width;
|
||||
} while (loguy < mid && comp(loguy, mid, context) <= 0);
|
||||
}
|
||||
if (mid <= loguy) {
|
||||
do {
|
||||
loguy += width;
|
||||
} while (loguy <= hi && comp(loguy, mid, context) <= 0);
|
||||
}
|
||||
|
||||
/* lo < loguy <= hi+1, A[i] <= A[mid] for lo <= i < loguy,
|
||||
either loguy > hi or A[loguy] > A[mid] */
|
||||
|
||||
do {
|
||||
higuy -= width;
|
||||
} while (higuy > mid && comp(higuy, mid, context) > 0);
|
||||
|
||||
/* lo <= higuy < hi, A[i] > A[mid] for higuy < i < hi,
|
||||
either higuy == lo or A[higuy] <= A[mid] */
|
||||
|
||||
if (higuy < loguy)
|
||||
break;
|
||||
|
||||
/* if loguy > hi or higuy == lo, then we would have exited, so
|
||||
A[loguy] > A[mid], A[higuy] <= A[mid],
|
||||
loguy <= hi, higuy > lo */
|
||||
|
||||
swap(loguy, higuy, width);
|
||||
|
||||
/* If the partition element was moved, follow it. Only need
|
||||
to check for mid == higuy, since before the swap,
|
||||
A[loguy] > A[mid] implies loguy != mid. */
|
||||
|
||||
if (mid == higuy)
|
||||
mid = loguy;
|
||||
|
||||
/* A[loguy] <= A[mid], A[higuy] > A[mid]; so condition at top
|
||||
of loop is re-established */
|
||||
}
|
||||
|
||||
/* A[i] <= A[mid] for lo <= i < loguy,
|
||||
A[i] > A[mid] for higuy < i < hi,
|
||||
A[hi] >= A[mid]
|
||||
higuy < loguy
|
||||
implying:
|
||||
higuy == loguy-1
|
||||
or higuy == hi - 1, loguy == hi + 1, A[hi] == A[mid] */
|
||||
|
||||
/* Find adjacent elements equal to the partition element. The
|
||||
doubled loop is to avoid calling comp(mid,mid), since some
|
||||
existing comparison funcs don't work when passed the same value
|
||||
for both pointers. */
|
||||
|
||||
higuy += width;
|
||||
if (mid < higuy) {
|
||||
do {
|
||||
higuy -= width;
|
||||
} while (higuy > mid && comp(higuy, mid, context) == 0);
|
||||
}
|
||||
if (mid >= higuy) {
|
||||
do {
|
||||
higuy -= width;
|
||||
} while (higuy > lo && comp(higuy, mid, context) == 0);
|
||||
}
|
||||
|
||||
/* OK, now we have the following:
|
||||
higuy < loguy
|
||||
lo <= higuy <= hi
|
||||
A[i] <= A[mid] for lo <= i <= higuy
|
||||
A[i] == A[mid] for higuy < i < loguy
|
||||
A[i] > A[mid] for loguy <= i < hi
|
||||
A[hi] >= A[mid] */
|
||||
|
||||
/* We've finished the partition, now we want to sort the subarrays
|
||||
[lo, higuy] and [loguy, hi].
|
||||
We do the smaller one first to minimize stack usage.
|
||||
We only sort arrays of length 2 or more.*/
|
||||
|
||||
if ( higuy - lo >= hi - loguy ) {
|
||||
if (lo < higuy) {
|
||||
lostk[stkptr] = lo;
|
||||
histk[stkptr] = higuy;
|
||||
++stkptr;
|
||||
} /* save big recursion for later */
|
||||
|
||||
if (loguy < hi) {
|
||||
lo = loguy;
|
||||
goto recurse; /* do small recursion */
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (loguy < hi) {
|
||||
lostk[stkptr] = loguy;
|
||||
histk[stkptr] = hi;
|
||||
++stkptr; /* save big recursion for later */
|
||||
}
|
||||
|
||||
if (lo < higuy) {
|
||||
hi = higuy;
|
||||
goto recurse; /* do small recursion */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We have sorted the array, except for any pending sorts on the stack.
|
||||
Check if there are any, and do them. */
|
||||
|
||||
--stkptr;
|
||||
if (stkptr >= 0) {
|
||||
lo = lostk[stkptr];
|
||||
hi = histk[stkptr];
|
||||
goto recurse; /* pop subarray from stack */
|
||||
}
|
||||
else
|
||||
return; /* all subarrays done */
|
||||
}
|
||||
|
||||
|
||||
/***
|
||||
*shortsort(hi, lo, width, comp) - insertion sort for sorting short arrays
|
||||
*
|
||||
*Purpose:
|
||||
* sorts the sub-array of elements between lo and hi (inclusive)
|
||||
* side effects: sorts in place
|
||||
* assumes that lo < hi
|
||||
*
|
||||
*Entry:
|
||||
* char *lo = pointer to low element to sort
|
||||
* char *hi = pointer to high element to sort
|
||||
* size_t width = width in bytes of each array element
|
||||
* int (*comp)() = pointer to function returning analog of strcmp for
|
||||
* strings, but supplied by user for comparing the array elements.
|
||||
* it accepts 2 pointers to elements and returns neg if 1<2, 0 if
|
||||
* 1=2, pos if 1>2.
|
||||
*
|
||||
*Exit:
|
||||
* returns void
|
||||
*
|
||||
*Exceptions:
|
||||
*
|
||||
*******************************************************************************/
|
||||
|
||||
static void __cdecl shortsort (
|
||||
uint8_t *lo,
|
||||
uint8_t *hi,
|
||||
size_t width,
|
||||
const void *context,
|
||||
int (__fastcall *comp)(const void *, const void *, const void *)
|
||||
)
|
||||
{
|
||||
uint8_t *p;
|
||||
|
||||
/* Note: in assertions below, i and j are alway inside original bound of
|
||||
array to sort. */
|
||||
|
||||
while (hi > lo) {
|
||||
/* A[i] <= A[j] for i <= j, j > hi */
|
||||
uint8_t *max = lo;
|
||||
for (p = lo+width; p <= hi; p += width) {
|
||||
/* A[i] <= A[max] for lo <= i < p */
|
||||
if (comp(p, max, context) > 0) {
|
||||
max = p;
|
||||
}
|
||||
/* A[i] <= A[max] for lo <= i <= p */
|
||||
}
|
||||
|
||||
/* A[i] <= A[max] for lo <= i <= hi */
|
||||
|
||||
swap(max, hi, width);
|
||||
|
||||
/* A[i] <= A[hi] for i <= hi, so A[i] <= A[j] for i <= j, j >= hi */
|
||||
|
||||
hi -= width;
|
||||
|
||||
/* A[i] <= A[j] for i <= j, j > hi, loop top condition established */
|
||||
}
|
||||
/* A[i] <= A[j] for i <= j, j > lo, which implies A[i] <= A[j] for i < j,
|
||||
so array is sorted */
|
||||
}
|
||||
|
||||
|
||||
/***
|
||||
*swap(a, b, width) - swap two elements
|
||||
*
|
||||
*Purpose:
|
||||
* swaps the two array elements of size width
|
||||
*
|
||||
*Entry:
|
||||
* char *a, *b = pointer to two elements to swap
|
||||
* size_t width = width in bytes of each array element
|
||||
*
|
||||
*Exit:
|
||||
* returns void
|
||||
*
|
||||
*Exceptions:
|
||||
*
|
||||
*******************************************************************************/
|
||||
|
||||
static void swap (
|
||||
uint8_t *_a,
|
||||
uint8_t *_b,
|
||||
size_t width
|
||||
)
|
||||
{
|
||||
#if 1
|
||||
void *tmp;
|
||||
void **a = (void **)_a;
|
||||
void **b = (void **)_b;
|
||||
if ( a != b )
|
||||
/* Do the swap one character at a time to avoid potential alignment
|
||||
problems. */
|
||||
do {
|
||||
tmp = *a;
|
||||
*a++ = *b;
|
||||
*b++ = tmp;
|
||||
width-=sizeof(void *);
|
||||
} while (width);
|
||||
#else
|
||||
//void *temp = alloca(width);
|
||||
memcpy(temp, a, width);
|
||||
memcpy(a, b, width);
|
||||
memcpy(b, temp, width);
|
||||
#endif
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue