GC Adapter Implementation

This commit is contained in:
Ameer 2020-06-21 12:36:28 -04:00
parent f98bf1025f
commit 0248614add
18 changed files with 1156 additions and 158 deletions

View file

@ -0,0 +1,350 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
//*
#include "common/logging/log.h"
#include "common/threadsafe_queue.h"
#include "input_common/gcadapter/gc_adapter.h"
Common::SPSCQueue<GCPadStatus> pad_queue[4];
struct GCState state[4];
namespace GCAdapter {
static libusb_device_handle* usb_adapter_handle = nullptr;
static u8 adapter_controllers_status[4] = {
ControllerTypes::CONTROLLER_NONE, ControllerTypes::CONTROLLER_NONE,
ControllerTypes::CONTROLLER_NONE, ControllerTypes::CONTROLLER_NONE};
static std::mutex s_mutex;
static std::thread adapter_input_thread;
static bool adapter_thread_running;
static std::mutex initialization_mutex;
static std::thread detect_thread;
static bool detect_thread_running = false;
static libusb_context* libusb_ctx;
static u8 input_endpoint = 0;
static bool configuring = false;
GCPadStatus CheckStatus(int port, u8 adapter_payload[37]) {
GCPadStatus pad = {};
bool get_origin = false;
u8 type = adapter_payload[1 + (9 * port)] >> 4;
if (type)
get_origin = true;
adapter_controllers_status[port] = type;
if (adapter_controllers_status[port] != ControllerTypes::CONTROLLER_NONE) {
u8 b1 = adapter_payload[1 + (9 * port) + 1];
u8 b2 = adapter_payload[1 + (9 * port) + 2];
if (b1 & (1 << 0))
pad.button |= PAD_BUTTON_A;
if (b1 & (1 << 1))
pad.button |= PAD_BUTTON_B;
if (b1 & (1 << 2))
pad.button |= PAD_BUTTON_X;
if (b1 & (1 << 3))
pad.button |= PAD_BUTTON_Y;
if (b1 & (1 << 4))
pad.button |= PAD_BUTTON_LEFT;
if (b1 & (1 << 5))
pad.button |= PAD_BUTTON_RIGHT;
if (b1 & (1 << 6))
pad.button |= PAD_BUTTON_DOWN;
if (b1 & (1 << 7))
pad.button |= PAD_BUTTON_UP;
if (b2 & (1 << 0))
pad.button |= PAD_BUTTON_START;
if (b2 & (1 << 1))
pad.button |= PAD_TRIGGER_Z;
if (b2 & (1 << 2))
pad.button |= PAD_TRIGGER_R;
if (b2 & (1 << 3))
pad.button |= PAD_TRIGGER_L;
if (get_origin)
pad.button |= PAD_GET_ORIGIN;
pad.stickX = adapter_payload[1 + (9 * port) + 3];
pad.stickY = adapter_payload[1 + (9 * port) + 4];
pad.substickX = adapter_payload[1 + (9 * port) + 5];
pad.substickY = adapter_payload[1 + (9 * port) + 6];
pad.triggerLeft = adapter_payload[1 + (9 * port) + 7];
pad.triggerRight = adapter_payload[1 + (9 * port) + 8];
}
return pad;
}
void PadToState(GCPadStatus pad, GCState& state) {
//std::lock_guard lock{s_mutex};
state.buttons.insert_or_assign(PAD_BUTTON_A, pad.button & PAD_BUTTON_A);
state.buttons.insert_or_assign(PAD_BUTTON_B, pad.button & PAD_BUTTON_B);
state.buttons.insert_or_assign(PAD_BUTTON_X, pad.button & PAD_BUTTON_X);
state.buttons.insert_or_assign(PAD_BUTTON_Y, pad.button & PAD_BUTTON_Y);
state.buttons.insert_or_assign(PAD_BUTTON_LEFT, pad.button & PAD_BUTTON_LEFT);
state.buttons.insert_or_assign(PAD_BUTTON_RIGHT, pad.button & PAD_BUTTON_RIGHT);
state.buttons.insert_or_assign(PAD_BUTTON_DOWN, pad.button & PAD_BUTTON_DOWN);
state.buttons.insert_or_assign(PAD_BUTTON_UP, pad.button & PAD_BUTTON_UP);
state.buttons.insert_or_assign(PAD_BUTTON_START, pad.button & PAD_BUTTON_START);
state.buttons.insert_or_assign(PAD_TRIGGER_Z, pad.button & PAD_TRIGGER_Z);
state.buttons.insert_or_assign(PAD_TRIGGER_L, pad.button & PAD_TRIGGER_L);
state.buttons.insert_or_assign(PAD_TRIGGER_R, pad.button & PAD_TRIGGER_R);
state.axes.insert_or_assign(STICK_X, pad.stickX);
state.axes.insert_or_assign(STICK_Y, pad.stickY);
state.axes.insert_or_assign(SUBSTICK_X, pad.substickX);
state.axes.insert_or_assign(SUBSTICK_Y, pad.substickY);
state.axes.insert_or_assign(TRIGGER_LEFT, pad.triggerLeft);
state.axes.insert_or_assign(TRIGGER_RIGHT, pad.triggerRight);
}
static void Read() {
LOG_INFO(Input, "GC Adapter Read() thread started");
int payload_size_in;
u8 adapter_payload[37];
while (adapter_thread_running) {
libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload,
sizeof(adapter_payload), &payload_size_in, 32);
int payload_size = 0;
u8 controller_payload_copy[37];
{
std::lock_guard<std::mutex> lk(s_mutex);
std::copy(std::begin(adapter_payload), std::end(adapter_payload),
std::begin(controller_payload_copy));
payload_size = payload_size_in;
}
GCPadStatus pad[4];
if (payload_size != sizeof(controller_payload_copy) ||
controller_payload_copy[0] != LIBUSB_DT_HID) {
LOG_ERROR(Input, "error reading payload (size: %d, type: %02x)", payload_size,
controller_payload_copy[0]);
} else {
for (int i = 0; i < 4; i++)
pad[i] = CheckStatus(i, controller_payload_copy);
}
for (int port = 0; port < 4; port++) {
if (DeviceConnected(port) && configuring) {
if (pad[port].button != PAD_GET_ORIGIN)
pad_queue[port].Push(pad[port]);
// Accounting for a threshold here because of some controller variance
if (pad[port].stickX > pad[port].MAIN_STICK_CENTER_X + pad[port].THRESHOLD ||
pad[port].stickX < pad[port].MAIN_STICK_CENTER_X - pad[port].THRESHOLD) {
pad[port].axis_which = STICK_X;
pad[port].axis_value = pad[port].stickX;
pad_queue[port].Push(pad[port]);
}
if (pad[port].stickY > pad[port].MAIN_STICK_CENTER_Y + pad[port].THRESHOLD ||
pad[port].stickY < pad[port].MAIN_STICK_CENTER_Y - pad[port].THRESHOLD) {
pad[port].axis_which = STICK_Y;
pad[port].axis_value = pad[port].stickY;
pad_queue[port].Push(pad[port]);
}
if (pad[port].substickX > pad[port].C_STICK_CENTER_X + pad[port].THRESHOLD ||
pad[port].substickX < pad[port].C_STICK_CENTER_X - pad[port].THRESHOLD) {
pad[port].axis_which = SUBSTICK_X;
pad[port].axis_value = pad[port].substickX;
pad_queue[port].Push(pad[port]);
}
if (pad[port].substickY > pad[port].C_STICK_CENTER_Y + pad[port].THRESHOLD ||
pad[port].substickY < pad[port].C_STICK_CENTER_Y - pad[port].THRESHOLD) {
pad[port].axis_which = SUBSTICK_Y;
pad[port].axis_value = pad[port].substickY;
pad_queue[port].Push(pad[port]);
}
}
PadToState(pad[port], state[port]);
}
std::this_thread::yield();
}
}
static void ScanThreadFunc() {
LOG_INFO(Input, "GC Adapter scanning thread started");
while (detect_thread_running) {
if (usb_adapter_handle == nullptr) {
std::lock_guard<std::mutex> lk(initialization_mutex);
Setup();
}
Sleep(500);
}
}
void Init() {
if (usb_adapter_handle != nullptr)
return;
LOG_INFO(Input, "GC Adapter Initialization started");
current_status = NO_ADAPTER_DETECTED;
libusb_init(&libusb_ctx);
StartScanThread();
}
void StartScanThread() {
if (detect_thread_running)
return;
if (!libusb_ctx)
return;
detect_thread_running = true;
detect_thread = std::thread(ScanThreadFunc);
}
void StopScanThread() {
detect_thread.join();
}
static void Setup() {
// Reset the error status in case the adapter gets unplugged
if (current_status < 0)
current_status = NO_ADAPTER_DETECTED;
for (int i = 0; i < 4; i++)
adapter_controllers_status[i] = ControllerTypes::CONTROLLER_NONE;
libusb_device** devs; // pointer to list of connected usb devices
int cnt = libusb_get_device_list(libusb_ctx, &devs); //get the list of devices
for (int i = 0; i < cnt; i++) {
if (CheckDeviceAccess(devs[i])) {
// GC Adapter found, registering it
GetGCEndpoint(devs[i]);
break;
}
}
}
static bool CheckDeviceAccess(libusb_device* device) {
libusb_device_descriptor desc;
int ret = libusb_get_device_descriptor(device, &desc);
if (ret) {
// could not acquire the descriptor, no point in trying to use it.
LOG_ERROR(Input, "libusb_get_device_descriptor failed with error: %d", ret);
return false;
}
if (desc.idVendor != 0x057e || desc.idProduct != 0x0337) {
// This isnt the device we are looking for.
return false;
}
ret = libusb_open(device, &usb_adapter_handle);
if (ret == LIBUSB_ERROR_ACCESS) {
LOG_ERROR(Input,
"Yuzu can not gain access to this device: ID %04X:%04X.",
desc.idVendor, desc.idProduct);
return false;
}
if (ret) {
LOG_ERROR(Input, "libusb_open failed to open device with error = %d", ret);
return false;
}
ret = libusb_kernel_driver_active(usb_adapter_handle, 0);
if (ret == 1) {
ret = libusb_detach_kernel_driver(usb_adapter_handle, 0);
if (ret != 0 && ret != LIBUSB_ERROR_NOT_SUPPORTED)
LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = %d", ret);
}
if (ret != 0 && ret != LIBUSB_ERROR_NOT_SUPPORTED) {
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
ret = libusb_claim_interface(usb_adapter_handle, 0);
if (ret) {
LOG_ERROR(Input, "libusb_claim_interface failed with error = %d", ret);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
return true;
}
static void GetGCEndpoint(libusb_device* device) {
libusb_config_descriptor* config = nullptr;
libusb_get_config_descriptor(device, 0, &config);
for (u8 ic = 0; ic < config->bNumInterfaces; ic++) {
const libusb_interface* interfaceContainer = &config->interface[ic];
for (int i = 0; i < interfaceContainer->num_altsetting; i++) {
const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i];
for (u8 e = 0; e < interface->bNumEndpoints; e++) {
const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e];
if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN)
input_endpoint = endpoint->bEndpointAddress;
}
}
}
adapter_thread_running = true;
current_status = ADAPTER_DETECTED;
adapter_input_thread = std::thread(Read); // Read input
}
void Shutdown() {
StopScanThread();
Reset();
current_status = NO_ADAPTER_DETECTED;
}
static void Reset() {
std::unique_lock<std::mutex> lock(initialization_mutex, std::defer_lock);
if (!lock.try_lock())
return;
if (current_status != ADAPTER_DETECTED)
return;
if (adapter_thread_running)
adapter_input_thread.join();
for (int i = 0; i < 4; i++)
adapter_controllers_status[i] = ControllerTypes::CONTROLLER_NONE;
current_status = NO_ADAPTER_DETECTED;
if (usb_adapter_handle) {
libusb_release_interface(usb_adapter_handle, 0);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
}
}
bool DeviceConnected(int port) {
return adapter_controllers_status[port] != ControllerTypes::CONTROLLER_NONE;
}
void ResetDeviceType(int port) {
adapter_controllers_status[port] = ControllerTypes::CONTROLLER_NONE;
}
void BeginConfiguration() {
configuring = true;
}
void EndConfiguration() {
configuring = false;
}
} // end of namespace GCAdapter

View file

@ -0,0 +1,116 @@
#pragma once
#include <algorithm>
#include <libusb.h>
#include <mutex>
#include <functional>
#include "common/common_types.h"
enum {
PAD_USE_ORIGIN = 0x0080,
PAD_GET_ORIGIN = 0x2000,
PAD_ERR_STATUS = 0x8000,
};
enum PadButton {
PAD_BUTTON_LEFT = 0x0001,
PAD_BUTTON_RIGHT = 0x0002,
PAD_BUTTON_DOWN = 0x0004,
PAD_BUTTON_UP = 0x0008,
PAD_TRIGGER_Z = 0x0010,
PAD_TRIGGER_R = 0x0020,
PAD_TRIGGER_L = 0x0040,
PAD_BUTTON_A = 0x0100,
PAD_BUTTON_B = 0x0200,
PAD_BUTTON_X = 0x0400,
PAD_BUTTON_Y = 0x0800,
PAD_BUTTON_START = 0x1000,
// Below is for compatibility with "AxisButton" type
PAD_STICK = 0x2000,
};
enum PadAxes { STICK_X, STICK_Y, SUBSTICK_X, SUBSTICK_Y, TRIGGER_LEFT, TRIGGER_RIGHT };
struct GCPadStatus {
u16 button; // Or-ed PAD_BUTTON_* and PAD_TRIGGER_* bits
u8 stickX; // 0 <= stickX <= 255
u8 stickY; // 0 <= stickY <= 255
u8 substickX; // 0 <= substickX <= 255
u8 substickY; // 0 <= substickY <= 255
u8 triggerLeft; // 0 <= triggerLeft <= 255
u8 triggerRight; // 0 <= triggerRight <= 255
bool isConnected{true};
static const u8 MAIN_STICK_CENTER_X = 0x80;
static const u8 MAIN_STICK_CENTER_Y = 0x80;
static const u8 MAIN_STICK_RADIUS = 0x7f;
static const u8 C_STICK_CENTER_X = 0x80;
static const u8 C_STICK_CENTER_Y = 0x80;
static const u8 C_STICK_RADIUS = 0x7f;
static const u8 TRIGGER_CENTER = 20;
static const u8 THRESHOLD = 10;
u8 port;
u8 axis_which = 255;
u8 axis_value = 255;
};
struct GCState {
std::unordered_map<int, bool> buttons;
std::unordered_map<int, u16> axes;
};
namespace GCAdapter {
enum ControllerTypes {
CONTROLLER_NONE = 0,
CONTROLLER_WIRED = 1,
CONTROLLER_WIRELESS = 2
};
enum {
NO_ADAPTER_DETECTED = 0,
ADAPTER_DETECTED = 1,
};
// Current adapter status: detected/not detected/in error (holds the error code)
static int current_status = NO_ADAPTER_DETECTED;
GCPadStatus CheckStatus(int port, u8 adapter_payload[37]);
/// Initialize the GC Adapter capture and read sequence
void Init();
/// Close the adapter read thread and release the adapter
void Shutdown();
/// Begin scanning for the GC Adapter.
void StartScanThread();
/// Stop scanning for the adapter
void StopScanThread();
/// Returns true if there is a device connected to port
bool DeviceConnected(int port);
/// Resets status of device connected to port
void ResetDeviceType(int port);
/// Returns true if we successfully gain access to GC Adapter
bool CheckDeviceAccess(libusb_device* device);
/// Captures GC Adapter endpoint address,
void GetGCEndpoint(libusb_device* device);
/// For shutting down, clear all data, join all threads, release usb
void Reset();
/// For use in initialization, querying devices to find the adapter
void Setup();
/// Used for polling
void BeginConfiguration();
void EndConfiguration();
} // end of namespace GCAdapter

View file

@ -0,0 +1,310 @@
#include <atomic>
#include <list>
#include <mutex>
#include <utility>
#include "input_common/gcadapter/gc_poller.h"
#include "input_common/gcadapter/gc_adapter.h"
#include "common/threadsafe_queue.h"
// Using extern as to avoid multply defined symbols.
extern Common::SPSCQueue<GCPadStatus> pad_queue[4];
extern struct GCState state[4];
namespace InputCommon {
class GCButton final : public Input::ButtonDevice {
public:
explicit GCButton(int port_, int button_, int axis_)
: port(port_), button(button_) {
}
~GCButton() override;
bool GetStatus() const override {
return state[port].buttons.at(button);
}
private:
const int port;
const int button;
};
class GCAxisButton final : public Input::ButtonDevice {
public:
explicit GCAxisButton(int port_, int axis_, float threshold_,
bool trigger_if_greater_)
: port(port_), axis(axis_), threshold(threshold_),
trigger_if_greater(trigger_if_greater_) {
}
bool GetStatus() const override {
const float axis_value = (state[port].axes.at(axis) - 128.0f) / 128.0f;
if (trigger_if_greater) {
return axis_value > 0.10f; //TODO(ameerj) : Fix threshold.
}
return axis_value < -0.10f;
}
private:
const int port;
const int axis;
float threshold;
bool trigger_if_greater;
};
GCButtonFactory::GCButtonFactory() {
GCAdapter::Init();
}
GCButton::~GCButton() {
GCAdapter::Shutdown();
}
std::unique_ptr<Input::ButtonDevice> GCButtonFactory::Create(const Common::ParamPackage& params) {
int button_id = params.Get("button", 0);
int port = params.Get("port", 0);
// For Axis buttons, used by the binary sticks.
if (params.Has("axis")) {
const int axis = params.Get("axis", 0);
const float threshold = params.Get("threshold", 0.5f);
const std::string direction_name = params.Get("direction", "");
bool trigger_if_greater;
if (direction_name == "+") {
trigger_if_greater = true;
} else if (direction_name == "-") {
trigger_if_greater = false;
} else {
trigger_if_greater = true;
LOG_ERROR(Input, "Unknown direction {}", direction_name);
}
return std::make_unique<GCAxisButton>(port, axis, threshold, trigger_if_greater);
}
std::unique_ptr<GCButton> button =
std::make_unique<GCButton>(port, button_id, params.Get("axis", 0));
return std::move(button);
}
Common::ParamPackage GCButtonFactory::GetNextInput() {
Common::ParamPackage params;
GCPadStatus pad;
for (int i = 0; i < 4; i++) {
while (pad_queue[i].Pop(pad)) {
// This while loop will break on the earliest detected button
params.Set("engine", "gcpad");
params.Set("port", i);
// I was debating whether to keep these verbose for ease of reading
// or to use a while loop shifting the bits to test and set the value.
if (pad.button & PAD_BUTTON_A) {
params.Set("button", PAD_BUTTON_A);
break;
}
if (pad.button & PAD_BUTTON_B) {
params.Set("button", PAD_BUTTON_B);
break;
}
if (pad.button & PAD_BUTTON_X) {
params.Set("button", PAD_BUTTON_X);
break;
}
if (pad.button & PAD_BUTTON_Y) {
params.Set("button", PAD_BUTTON_Y);
break;
}
if (pad.button & PAD_BUTTON_DOWN) {
params.Set("button", PAD_BUTTON_DOWN);
break;
}
if (pad.button & PAD_BUTTON_LEFT) {
params.Set("button", PAD_BUTTON_LEFT);
break;
}
if (pad.button & PAD_BUTTON_RIGHT) {
params.Set("button", PAD_BUTTON_RIGHT);
break;
}
if (pad.button & PAD_BUTTON_UP) {
params.Set("button", PAD_BUTTON_UP);
break;
}
if (pad.button & PAD_TRIGGER_L) {
params.Set("button", PAD_TRIGGER_L);
break;
}
if (pad.button & PAD_TRIGGER_R) {
params.Set("button", PAD_TRIGGER_R);
break;
}
if (pad.button & PAD_TRIGGER_Z) {
params.Set("button", PAD_TRIGGER_Z);
break;
}
if (pad.button & PAD_BUTTON_START) {
params.Set("button", PAD_BUTTON_START);
break;
}
// For Axis button implementation
if (pad.axis_which != 255) {
params.Set("axis", pad.axis_which);
params.Set("button", PAD_STICK);
if (pad.axis_value > 128) {
params.Set("direction", "+");
params.Set("threshold", "0.5");
} else {
params.Set("direction", "-");
params.Set("threshold", "-0.5");
}
break;
}
}
}
return params;
}
void GCButtonFactory::BeginConfiguration() {
polling = true;
for (int i = 0; i < 4; i++)
pad_queue[i].Clear();
GCAdapter::BeginConfiguration();
}
void GCButtonFactory::EndConfiguration() {
polling = false;
for (int i = 0; i < 4; i++)
pad_queue[i].Clear();
GCAdapter::EndConfiguration();
}
class GCAnalog final : public Input::AnalogDevice {
public:
GCAnalog(int port_, int axis_x_, int axis_y_, float deadzone_)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_) {
}
float GetAxis(int axis) const {
std::lock_guard lock{mutex};
// division is not by a perfect 128 to account for some variance in center location
// e.g. my device idled at 131 in X, 120 in Y, and full range of motion was in range [20-230]
return (state[port].axes.at(axis) - 128.0f) / 95.0f;
}
std::tuple<float, float> GetAnalog(int axis_x, int axis_y) const {
float x = GetAxis(axis_x);
float y = GetAxis(axis_y);
// Make sure the coordinates are in the unit circle,
// otherwise normalize it.
float r = x * x + y * y;
if (r > 1.0f) {
r = std::sqrt(r);
x /= r;
y /= r;
}
return std::make_tuple(x, y);
}
std::tuple<float, float> GetStatus() const override {
const auto [x, y] = GetAnalog(axis_x, axis_y);
const float r = std::sqrt((x * x) + (y * y));
if (r > deadzone) {
return std::make_tuple(x / r * (r - deadzone) / (1 - deadzone),
y / r * (r - deadzone) / (1 - deadzone));
}
return std::make_tuple<float, float>(0.0f, 0.0f);
}
bool GetAnalogDirectionStatus(Input::AnalogDirection direction) const override {
const auto [x, y] = GetStatus();
const float directional_deadzone = 0.4f;
switch (direction) {
case Input::AnalogDirection::RIGHT:
return x > directional_deadzone;
case Input::AnalogDirection::LEFT:
return x < -directional_deadzone;
case Input::AnalogDirection::UP:
return y > directional_deadzone;
case Input::AnalogDirection::DOWN:
return y < -directional_deadzone;
}
return false;
}
private:
const int port;
const int axis_x;
const int axis_y;
const float deadzone;
mutable std::mutex mutex;
};
/// An analog device factory that creates analog devices from GC Adapter
GCAnalogFactory::GCAnalogFactory() {};
/**
* Creates analog device from joystick axes
* @param params contains parameters for creating the device:
* - "port": the nth gcpad on the adapter
* - "axis_x": the index of the axis to be bind as x-axis
* - "axis_y": the index of the axis to be bind as y-axis
*/
std::unique_ptr<Input::AnalogDevice> GCAnalogFactory::Create(const Common::ParamPackage& params) {
const std::string guid = params.Get("guid", "0");
const int port = params.Get("port", 0);
const int axis_x = params.Get("axis_x", 0);
const int axis_y = params.Get("axis_y", 1);
const float deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, .99f);
return std::make_unique<GCAnalog>(port, axis_x, axis_y, deadzone);
}
void GCAnalogFactory::BeginConfiguration() {
polling = true;
for (int i = 0; i < 4; i++)
pad_queue[i].Clear();
GCAdapter::BeginConfiguration();
}
void GCAnalogFactory::EndConfiguration() {
polling = false;
for (int i = 0; i < 4; i++)
pad_queue[i].Clear();
GCAdapter::EndConfiguration();
}
Common::ParamPackage GCAnalogFactory::GetNextInput() {
GCPadStatus pad;
for (int i = 0; i < 4; i++) {
while (pad_queue[i].Pop(pad)) {
if (pad.axis_which == 255 || std::abs((pad.axis_value - 128.0f) / 128.0f) < 0.1) {
continue;
}
// An analog device needs two axes, so we need to store the axis for later and wait for
// a second SDL event. The axes also must be from the same joystick.
const int axis = pad.axis_which;
if (analog_x_axis == -1) {
analog_x_axis = axis;
controller_number = i;
} else if (analog_y_axis == -1 && analog_x_axis != axis && controller_number == i) {
analog_y_axis = axis;
}
}
}
Common::ParamPackage params;
if (analog_x_axis != -1 && analog_y_axis != -1) {
params.Set("engine", "gcpad");
params.Set("port", controller_number);
params.Set("axis_x", analog_x_axis);
params.Set("axis_y", analog_y_axis);
analog_x_axis = -1;
analog_y_axis = -1;
controller_number = -1;
return params;
}
return params;
}
} // namespace InputCommon

View file

@ -0,0 +1,59 @@
#pragma once
#include <memory>
#include "core/frontend/input.h"
namespace InputCommon {
/**
* A button device factory representing a gcpad. It receives gcpad events and forward them
* to all button devices it created.
*/
class GCButtonFactory final : public Input::Factory<Input::ButtonDevice> {
public:
GCButtonFactory();
/**
* Creates a button device from a button press
* @param params contains parameters for creating the device:
* - "code": the code of the key to bind with the button
*/
std::unique_ptr<Input::ButtonDevice> Create(const Common::ParamPackage& params) override;
Common::ParamPackage GetNextInput();
/// For device input configuration/polling
void BeginConfiguration();
void EndConfiguration();
bool IsPolling() {
return polling;
}
private:
bool polling = false;
};
/// An analog device factory that creates analog devices from GC Adapter
class GCAnalogFactory final : public Input::Factory<Input::AnalogDevice> {
public:
GCAnalogFactory();
std::unique_ptr<Input::AnalogDevice> Create(const Common::ParamPackage& params) override;
Common::ParamPackage GetNextInput();
/// For device input configuration/polling
void BeginConfiguration();
void EndConfiguration();
bool IsPolling() {
return polling;
}
private:
int analog_x_axis = -1;
int analog_y_axis = -1;
int controller_number = -1;
bool polling = false;
};
} // namespace InputCommon