Merge branch 'master' into ssbo-align

This commit is contained in:
Ameer J 2023-11-26 21:08:53 -05:00 committed by GitHub
commit 1d11fe00a3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
409 changed files with 37059 additions and 27474 deletions

View file

@ -4,7 +4,7 @@
add_subdirectory(host_shaders)
if(LIBVA_FOUND)
set_source_files_properties(host1x/codecs/codec.cpp
set_source_files_properties(host1x/ffmpeg/ffmpeg.cpp
PROPERTIES COMPILE_DEFINITIONS LIBVA_FOUND=1)
list(APPEND FFmpeg_LIBRARIES ${LIBVA_LIBRARIES})
endif()
@ -15,6 +15,7 @@ add_library(video_core STATIC
buffer_cache/buffer_cache.cpp
buffer_cache/buffer_cache.h
buffer_cache/memory_tracker_base.h
buffer_cache/usage_tracker.h
buffer_cache/word_manager.h
cache_types.h
cdma_pusher.cpp
@ -66,6 +67,8 @@ add_library(video_core STATIC
host1x/codecs/vp9.cpp
host1x/codecs/vp9.h
host1x/codecs/vp9_types.h
host1x/ffmpeg/ffmpeg.cpp
host1x/ffmpeg/ffmpeg.h
host1x/control.cpp
host1x/control.h
host1x/host1x.cpp

View file

@ -67,6 +67,7 @@ void BufferCache<P>::TickFrame() {
if (!channel_state) {
return;
}
runtime.TickFrame(slot_buffers);
// Calculate hits and shots and move hit bits to the right
const u32 hits = std::reduce(channel_state->uniform_cache_hits.begin(),
@ -230,7 +231,10 @@ bool BufferCache<P>::DMACopy(GPUVAddr src_address, GPUVAddr dest_address, u64 am
for (const IntervalType& add_interval : tmp_intervals) {
common_ranges.add(add_interval);
}
runtime.CopyBuffer(dest_buffer, src_buffer, copies);
const auto& copy = copies[0];
src_buffer.MarkUsage(copy.src_offset, copy.size);
dest_buffer.MarkUsage(copy.dst_offset, copy.size);
runtime.CopyBuffer(dest_buffer, src_buffer, copies, true);
if (has_new_downloads) {
memory_tracker.MarkRegionAsGpuModified(*cpu_dest_address, amount);
}
@ -258,9 +262,10 @@ bool BufferCache<P>::DMAClear(GPUVAddr dst_address, u64 amount, u32 value) {
common_ranges.subtract(subtract_interval);
const BufferId buffer = FindBuffer(*cpu_dst_address, static_cast<u32>(size));
auto& dest_buffer = slot_buffers[buffer];
Buffer& dest_buffer = slot_buffers[buffer];
const u32 offset = dest_buffer.Offset(*cpu_dst_address);
runtime.ClearBuffer(dest_buffer, offset, size, value);
dest_buffer.MarkUsage(offset, size);
return true;
}
@ -603,6 +608,7 @@ void BufferCache<P>::CommitAsyncFlushesHigh() {
VAddr orig_cpu_addr = static_cast<VAddr>(second_copy.src_offset);
const IntervalType base_interval{orig_cpu_addr, orig_cpu_addr + copy.size};
async_downloads += std::make_pair(base_interval, 1);
buffer.MarkUsage(copy.src_offset, copy.size);
runtime.CopyBuffer(download_staging.buffer, buffer, copies, false);
normalized_copies.push_back(second_copy);
}
@ -621,8 +627,9 @@ void BufferCache<P>::CommitAsyncFlushesHigh() {
// Have in mind the staging buffer offset for the copy
copy.dst_offset += download_staging.offset;
const std::array copies{copy};
runtime.CopyBuffer(download_staging.buffer, slot_buffers[buffer_id], copies,
false);
Buffer& buffer = slot_buffers[buffer_id];
buffer.MarkUsage(copy.src_offset, copy.size);
runtime.CopyBuffer(download_staging.buffer, buffer, copies, false);
}
runtime.PostCopyBarrier();
runtime.Finish();
@ -742,7 +749,7 @@ void BufferCache<P>::BindHostIndexBuffer() {
{BufferCopy{.src_offset = upload_staging.offset, .dst_offset = 0, .size = size}}};
std::memcpy(upload_staging.mapped_span.data(),
draw_state.inline_index_draw_indexes.data(), size);
runtime.CopyBuffer(buffer, upload_staging.buffer, copies);
runtime.CopyBuffer(buffer, upload_staging.buffer, copies, true);
} else {
buffer.ImmediateUpload(0, draw_state.inline_index_draw_indexes);
}
@ -754,6 +761,7 @@ void BufferCache<P>::BindHostIndexBuffer() {
offset + draw_state.index_buffer.first * draw_state.index_buffer.FormatSizeInBytes();
runtime.BindIndexBuffer(buffer, new_offset, size);
} else {
buffer.MarkUsage(offset, size);
runtime.BindIndexBuffer(draw_state.topology, draw_state.index_buffer.format,
draw_state.index_buffer.first, draw_state.index_buffer.count,
buffer, offset, size);
@ -790,6 +798,7 @@ void BufferCache<P>::BindHostVertexBuffers() {
const u32 stride = maxwell3d->regs.vertex_streams[index].stride;
const u32 offset = buffer.Offset(binding.cpu_addr);
buffer.MarkUsage(offset, binding.size);
host_bindings.buffers.push_back(&buffer);
host_bindings.offsets.push_back(offset);
@ -895,6 +904,7 @@ void BufferCache<P>::BindHostGraphicsUniformBuffer(size_t stage, u32 index, u32
if constexpr (HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS) {
channel_state->uniform_buffer_binding_sizes[stage][binding_index] = size;
}
buffer.MarkUsage(offset, size);
if constexpr (NEEDS_BIND_UNIFORM_INDEX) {
runtime.BindUniformBuffer(stage, binding_index, buffer, offset, size);
} else {
@ -913,6 +923,7 @@ void BufferCache<P>::BindHostGraphicsStorageBuffers(size_t stage) {
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
buffer.MarkUsage(offset, size);
const bool is_written = ((channel_state->written_storage_buffers[stage] >> index) & 1) != 0;
if (is_written) {
@ -943,6 +954,7 @@ void BufferCache<P>::BindHostGraphicsTextureBuffers(size_t stage) {
const u32 offset = buffer.Offset(binding.cpu_addr);
const PixelFormat format = binding.format;
buffer.MarkUsage(offset, size);
if constexpr (SEPARATE_IMAGE_BUFFERS_BINDINGS) {
if (((channel_state->image_texture_buffers[stage] >> index) & 1) != 0) {
runtime.BindImageBuffer(buffer, offset, size, format);
@ -975,9 +987,10 @@ void BufferCache<P>::BindHostTransformFeedbackBuffers() {
MarkWrittenBuffer(binding.buffer_id, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
buffer.MarkUsage(offset, size);
host_bindings.buffers.push_back(&buffer);
host_bindings.offsets.push_back(offset);
host_bindings.sizes.push_back(binding.size);
host_bindings.sizes.push_back(size);
}
if (host_bindings.buffers.size() > 0) {
runtime.BindTransformFeedbackBuffers(host_bindings);
@ -1001,6 +1014,7 @@ void BufferCache<P>::BindHostComputeUniformBuffers() {
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
buffer.MarkUsage(offset, size);
if constexpr (NEEDS_BIND_UNIFORM_INDEX) {
runtime.BindComputeUniformBuffer(binding_index, buffer, offset, size);
++binding_index;
@ -1021,6 +1035,7 @@ void BufferCache<P>::BindHostComputeStorageBuffers() {
SynchronizeBuffer(buffer, binding.cpu_addr, size);
const u32 offset = buffer.Offset(binding.cpu_addr);
buffer.MarkUsage(offset, size);
const bool is_written =
((channel_state->written_compute_storage_buffers >> index) & 1) != 0;
@ -1053,6 +1068,7 @@ void BufferCache<P>::BindHostComputeTextureBuffers() {
const u32 offset = buffer.Offset(binding.cpu_addr);
const PixelFormat format = binding.format;
buffer.MarkUsage(offset, size);
if constexpr (SEPARATE_IMAGE_BUFFERS_BINDINGS) {
if (((channel_state->image_compute_texture_buffers >> index) & 1) != 0) {
runtime.BindImageBuffer(buffer, offset, size, format);
@ -1172,10 +1188,11 @@ void BufferCache<P>::UpdateVertexBuffer(u32 index) {
if (!gpu_memory->IsWithinGPUAddressRange(gpu_addr_end)) {
size = static_cast<u32>(gpu_memory->MaxContinuousRange(gpu_addr_begin, size));
}
const BufferId buffer_id = FindBuffer(*cpu_addr, size);
channel_state->vertex_buffers[index] = Binding{
.cpu_addr = *cpu_addr,
.size = size,
.buffer_id = FindBuffer(*cpu_addr, size),
.buffer_id = buffer_id,
};
}
@ -1192,11 +1209,6 @@ void BufferCache<P>::UpdateDrawIndirect() {
.size = static_cast<u32>(size),
.buffer_id = FindBuffer(*cpu_addr, static_cast<u32>(size)),
};
VAddr cpu_addr_start = Common::AlignDown(*cpu_addr, 64);
VAddr cpu_addr_end = Common::AlignUp(*cpu_addr + size, 64);
IntervalType interval{cpu_addr_start, cpu_addr_end};
ClearDownload(interval);
common_ranges.subtract(interval);
};
if (current_draw_indirect->include_count) {
update(current_draw_indirect->count_start_address, sizeof(u32),
@ -1406,7 +1418,8 @@ void BufferCache<P>::JoinOverlap(BufferId new_buffer_id, BufferId overlap_id,
.dst_offset = dst_base_offset,
.size = overlap.SizeBytes(),
});
runtime.CopyBuffer(new_buffer, overlap, copies);
new_buffer.MarkUsage(copies[0].dst_offset, copies[0].size);
runtime.CopyBuffer(new_buffer, overlap, copies, true);
DeleteBuffer(overlap_id, true);
}
@ -1419,7 +1432,9 @@ BufferId BufferCache<P>::CreateBuffer(VAddr cpu_addr, u32 wanted_size) {
const u32 size = static_cast<u32>(overlap.end - overlap.begin);
const BufferId new_buffer_id = slot_buffers.insert(runtime, rasterizer, overlap.begin, size);
auto& new_buffer = slot_buffers[new_buffer_id];
runtime.ClearBuffer(new_buffer, 0, new_buffer.SizeBytes(), 0);
const size_t size_bytes = new_buffer.SizeBytes();
runtime.ClearBuffer(new_buffer, 0, size_bytes, 0);
new_buffer.MarkUsage(0, size_bytes);
for (const BufferId overlap_id : overlap.ids) {
JoinOverlap(new_buffer_id, overlap_id, !overlap.has_stream_leap);
}
@ -1472,11 +1487,6 @@ void BufferCache<P>::TouchBuffer(Buffer& buffer, BufferId buffer_id) noexcept {
template <class P>
bool BufferCache<P>::SynchronizeBuffer(Buffer& buffer, VAddr cpu_addr, u32 size) {
return SynchronizeBufferImpl(buffer, cpu_addr, size);
}
template <class P>
bool BufferCache<P>::SynchronizeBufferImpl(Buffer& buffer, VAddr cpu_addr, u32 size) {
boost::container::small_vector<BufferCopy, 4> copies;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
@ -1498,51 +1508,6 @@ bool BufferCache<P>::SynchronizeBufferImpl(Buffer& buffer, VAddr cpu_addr, u32 s
return false;
}
template <class P>
bool BufferCache<P>::SynchronizeBufferNoModified(Buffer& buffer, VAddr cpu_addr, u32 size) {
boost::container::small_vector<BufferCopy, 4> copies;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
IntervalSet found_sets{};
auto make_copies = [&] {
for (auto& interval : found_sets) {
const std::size_t sub_size = interval.upper() - interval.lower();
const VAddr cpu_addr_ = interval.lower();
copies.push_back(BufferCopy{
.src_offset = total_size_bytes,
.dst_offset = cpu_addr_ - buffer.CpuAddr(),
.size = sub_size,
});
total_size_bytes += sub_size;
largest_copy = std::max<u64>(largest_copy, sub_size);
}
const std::span<BufferCopy> copies_span(copies.data(), copies.size());
UploadMemory(buffer, total_size_bytes, largest_copy, copies_span);
};
memory_tracker.ForEachUploadRange(cpu_addr, size, [&](u64 cpu_addr_out, u64 range_size) {
const VAddr base_adr = cpu_addr_out;
const VAddr end_adr = base_adr + range_size;
const IntervalType add_interval{base_adr, end_adr};
found_sets.add(add_interval);
});
if (found_sets.empty()) {
return true;
}
const IntervalType search_interval{cpu_addr, cpu_addr + size};
auto it = common_ranges.lower_bound(search_interval);
auto it_end = common_ranges.upper_bound(search_interval);
if (it == common_ranges.end()) {
make_copies();
return false;
}
while (it != it_end) {
found_sets.subtract(*it);
it++;
}
make_copies();
return false;
}
template <class P>
void BufferCache<P>::UploadMemory(Buffer& buffer, u64 total_size_bytes, u64 largest_copy,
std::span<BufferCopy> copies) {
@ -1591,7 +1556,8 @@ void BufferCache<P>::MappedUploadMemory([[maybe_unused]] Buffer& buffer,
// Apply the staging offset
copy.src_offset += upload_staging.offset;
}
runtime.CopyBuffer(buffer, upload_staging.buffer, copies);
const bool can_reorder = runtime.CanReorderUpload(buffer, copies);
runtime.CopyBuffer(buffer, upload_staging.buffer, copies, true, can_reorder);
}
}
@ -1633,7 +1599,8 @@ void BufferCache<P>::InlineMemoryImplementation(VAddr dest_address, size_t copy_
}};
u8* const src_pointer = upload_staging.mapped_span.data();
std::memcpy(src_pointer, inlined_buffer.data(), copy_size);
runtime.CopyBuffer(buffer, upload_staging.buffer, copies);
const bool can_reorder = runtime.CanReorderUpload(buffer, copies);
runtime.CopyBuffer(buffer, upload_staging.buffer, copies, true, can_reorder);
} else {
buffer.ImmediateUpload(buffer.Offset(dest_address), inlined_buffer.first(copy_size));
}
@ -1686,8 +1653,9 @@ void BufferCache<P>::DownloadBufferMemory(Buffer& buffer, VAddr cpu_addr, u64 si
for (BufferCopy& copy : copies) {
// Modify copies to have the staging offset in mind
copy.dst_offset += download_staging.offset;
buffer.MarkUsage(copy.src_offset, copy.size);
}
runtime.CopyBuffer(download_staging.buffer, buffer, copies_span);
runtime.CopyBuffer(download_staging.buffer, buffer, copies_span, true);
runtime.Finish();
for (const BufferCopy& copy : copies) {
const VAddr copy_cpu_addr = buffer.CpuAddr() + copy.src_offset;

View file

@ -529,10 +529,6 @@ private:
bool SynchronizeBuffer(Buffer& buffer, VAddr cpu_addr, u32 size);
bool SynchronizeBufferImpl(Buffer& buffer, VAddr cpu_addr, u32 size);
bool SynchronizeBufferNoModified(Buffer& buffer, VAddr cpu_addr, u32 size);
void UploadMemory(Buffer& buffer, u64 total_size_bytes, u64 largest_copy,
std::span<BufferCopy> copies);

View file

@ -0,0 +1,79 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#pragma once
#include "common/alignment.h"
#include "common/common_types.h"
namespace VideoCommon {
class UsageTracker {
static constexpr size_t BYTES_PER_BIT_SHIFT = 6;
static constexpr size_t PAGE_SHIFT = 6 + BYTES_PER_BIT_SHIFT;
static constexpr size_t PAGE_BYTES = 1 << PAGE_SHIFT;
public:
explicit UsageTracker(size_t size) {
const size_t num_pages = (size >> PAGE_SHIFT) + 1;
pages.resize(num_pages, 0ULL);
}
void Reset() noexcept {
std::ranges::fill(pages, 0ULL);
}
void Track(u64 offset, u64 size) noexcept {
const size_t page = offset >> PAGE_SHIFT;
const size_t page_end = (offset + size) >> PAGE_SHIFT;
TrackPage(page, offset, size);
if (page == page_end) {
return;
}
for (size_t i = page + 1; i < page_end; i++) {
pages[i] = ~u64{0};
}
const size_t offset_end = offset + size;
const size_t offset_end_page_aligned = Common::AlignDown(offset_end, PAGE_BYTES);
TrackPage(page_end, offset_end_page_aligned, offset_end - offset_end_page_aligned);
}
[[nodiscard]] bool IsUsed(u64 offset, u64 size) const noexcept {
const size_t page = offset >> PAGE_SHIFT;
const size_t page_end = (offset + size) >> PAGE_SHIFT;
if (IsPageUsed(page, offset, size)) {
return true;
}
for (size_t i = page + 1; i < page_end; i++) {
if (pages[i] != 0) {
return true;
}
}
const size_t offset_end = offset + size;
const size_t offset_end_page_aligned = Common::AlignDown(offset_end, PAGE_BYTES);
return IsPageUsed(page_end, offset_end_page_aligned, offset_end - offset_end_page_aligned);
}
private:
void TrackPage(u64 page, u64 offset, u64 size) noexcept {
const size_t offset_in_page = offset % PAGE_BYTES;
const size_t first_bit = offset_in_page >> BYTES_PER_BIT_SHIFT;
const size_t num_bits = std::min(size, PAGE_BYTES) >> BYTES_PER_BIT_SHIFT;
const size_t mask = ~u64{0} >> (64 - num_bits);
pages[page] |= (~u64{0} & mask) << first_bit;
}
bool IsPageUsed(u64 page, u64 offset, u64 size) const noexcept {
const size_t offset_in_page = offset % PAGE_BYTES;
const size_t first_bit = offset_in_page >> BYTES_PER_BIT_SHIFT;
const size_t num_bits = std::min(size, PAGE_BYTES) >> BYTES_PER_BIT_SHIFT;
const size_t mask = ~u64{0} >> (64 - num_bits);
const size_t mask2 = (~u64{0} & mask) << first_bit;
return (pages[page] & mask2) != 0;
}
private:
std::vector<u64> pages;
};
} // namespace VideoCommon

View file

@ -72,7 +72,7 @@ void Fermi2D::Blit() {
UNIMPLEMENTED_IF_MSG(regs.clip_enable != 0, "Clipped blit enabled");
const auto& args = regs.pixels_from_memory;
constexpr s64 null_derivate = 1ULL << 32;
constexpr s64 null_derivative = 1ULL << 32;
Surface src = regs.src;
const auto bytes_per_pixel = BytesPerBlock(PixelFormatFromRenderTargetFormat(src.format));
const bool delegate_to_gpu = src.width > 512 && src.height > 512 && bytes_per_pixel <= 8 &&
@ -89,7 +89,7 @@ void Fermi2D::Blit() {
.operation = regs.operation,
.filter = args.sample_mode.filter,
.must_accelerate =
args.du_dx != null_derivate || args.dv_dy != null_derivate || delegate_to_gpu,
args.du_dx != null_derivative || args.dv_dy != null_derivative || delegate_to_gpu,
.dst_x0 = args.dst_x0,
.dst_y0 = args.dst_y0,
.dst_x1 = args.dst_x0 + args.dst_width,

View file

@ -268,7 +268,7 @@ size_t Maxwell3D::EstimateIndexBufferSize() {
std::numeric_limits<u32>::max()};
const size_t byte_size = regs.index_buffer.FormatSizeInBytes();
const size_t log2_byte_size = Common::Log2Ceil64(byte_size);
const size_t cap{GetMaxCurrentVertices() * 3 * byte_size};
const size_t cap{GetMaxCurrentVertices() * 4 * byte_size};
const size_t lower_cap =
std::min<size_t>(static_cast<size_t>(end_address - start_address), cap);
return std::min<size_t>(

View file

@ -86,10 +86,7 @@ public:
uncommitted_operations.emplace_back(std::move(func));
}
pending_operations.emplace_back(std::move(uncommitted_operations));
{
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
QueueFence(new_fence);
}
QueueFence(new_fence);
if (!delay_fence) {
func();
}

View file

@ -1,11 +1,7 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <fstream>
#include <vector>
#include "common/assert.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "video_core/host1x/codecs/codec.h"
#include "video_core/host1x/codecs/h264.h"
@ -14,242 +10,17 @@
#include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h"
extern "C" {
#include <libavfilter/buffersink.h>
#include <libavfilter/buffersrc.h>
#include <libavutil/opt.h>
#ifdef LIBVA_FOUND
// for querying VAAPI driver information
#include <libavutil/hwcontext_vaapi.h>
#endif
}
namespace Tegra {
namespace {
constexpr AVPixelFormat PREFERRED_GPU_FMT = AV_PIX_FMT_NV12;
constexpr AVPixelFormat PREFERRED_CPU_FMT = AV_PIX_FMT_YUV420P;
constexpr std::array PREFERRED_GPU_DECODERS = {
AV_HWDEVICE_TYPE_CUDA,
#ifdef _WIN32
AV_HWDEVICE_TYPE_D3D11VA,
AV_HWDEVICE_TYPE_DXVA2,
#elif defined(__unix__)
AV_HWDEVICE_TYPE_VAAPI,
AV_HWDEVICE_TYPE_VDPAU,
#endif
// last resort for Linux Flatpak (w/ NVIDIA)
AV_HWDEVICE_TYPE_VULKAN,
};
void AVPacketDeleter(AVPacket* ptr) {
av_packet_free(&ptr);
}
using AVPacketPtr = std::unique_ptr<AVPacket, decltype(&AVPacketDeleter)>;
AVPixelFormat GetGpuFormat(AVCodecContext* av_codec_ctx, const AVPixelFormat* pix_fmts) {
for (const AVPixelFormat* p = pix_fmts; *p != AV_PIX_FMT_NONE; ++p) {
if (*p == av_codec_ctx->pix_fmt) {
return av_codec_ctx->pix_fmt;
}
}
LOG_INFO(Service_NVDRV, "Could not find compatible GPU AV format, falling back to CPU");
av_buffer_unref(&av_codec_ctx->hw_device_ctx);
av_codec_ctx->pix_fmt = PREFERRED_CPU_FMT;
return PREFERRED_CPU_FMT;
}
// List all the currently available hwcontext in ffmpeg
std::vector<AVHWDeviceType> ListSupportedContexts() {
std::vector<AVHWDeviceType> contexts{};
AVHWDeviceType current_device_type = AV_HWDEVICE_TYPE_NONE;
do {
current_device_type = av_hwdevice_iterate_types(current_device_type);
contexts.push_back(current_device_type);
} while (current_device_type != AV_HWDEVICE_TYPE_NONE);
return contexts;
}
} // namespace
void AVFrameDeleter(AVFrame* ptr) {
av_frame_free(&ptr);
}
Codec::Codec(Host1x::Host1x& host1x_, const Host1x::NvdecCommon::NvdecRegisters& regs)
: host1x(host1x_), state{regs}, h264_decoder(std::make_unique<Decoder::H264>(host1x)),
vp8_decoder(std::make_unique<Decoder::VP8>(host1x)),
vp9_decoder(std::make_unique<Decoder::VP9>(host1x)) {}
Codec::~Codec() {
if (!initialized) {
return;
}
// Free libav memory
avcodec_free_context(&av_codec_ctx);
av_buffer_unref(&av_gpu_decoder);
if (filters_initialized) {
avfilter_graph_free(&av_filter_graph);
}
}
bool Codec::CreateGpuAvDevice() {
static constexpr auto HW_CONFIG_METHOD = AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX;
static const auto supported_contexts = ListSupportedContexts();
for (const auto& type : PREFERRED_GPU_DECODERS) {
if (std::none_of(supported_contexts.begin(), supported_contexts.end(),
[&type](const auto& context) { return context == type; })) {
LOG_DEBUG(Service_NVDRV, "{} explicitly unsupported", av_hwdevice_get_type_name(type));
continue;
}
// Avoid memory leak from not cleaning up after av_hwdevice_ctx_create
av_buffer_unref(&av_gpu_decoder);
const int hwdevice_res = av_hwdevice_ctx_create(&av_gpu_decoder, type, nullptr, nullptr, 0);
if (hwdevice_res < 0) {
LOG_DEBUG(Service_NVDRV, "{} av_hwdevice_ctx_create failed {}",
av_hwdevice_get_type_name(type), hwdevice_res);
continue;
}
#ifdef LIBVA_FOUND
if (type == AV_HWDEVICE_TYPE_VAAPI) {
// we need to determine if this is an impersonated VAAPI driver
AVHWDeviceContext* hwctx =
static_cast<AVHWDeviceContext*>(static_cast<void*>(av_gpu_decoder->data));
AVVAAPIDeviceContext* vactx = static_cast<AVVAAPIDeviceContext*>(hwctx->hwctx);
const char* vendor_name = vaQueryVendorString(vactx->display);
if (strstr(vendor_name, "VDPAU backend")) {
// VDPAU impersonated VAAPI impl's are super buggy, we need to skip them
LOG_DEBUG(Service_NVDRV, "Skipping vdapu impersonated VAAPI driver");
continue;
} else {
// according to some user testing, certain vaapi driver (Intel?) could be buggy
// so let's log the driver name which may help the developers/supporters
LOG_DEBUG(Service_NVDRV, "Using VAAPI driver: {}", vendor_name);
}
}
#endif
for (int i = 0;; i++) {
const AVCodecHWConfig* config = avcodec_get_hw_config(av_codec, i);
if (!config) {
LOG_DEBUG(Service_NVDRV, "{} decoder does not support device type {}.",
av_codec->name, av_hwdevice_get_type_name(type));
break;
}
if ((config->methods & HW_CONFIG_METHOD) != 0 && config->device_type == type) {
LOG_INFO(Service_NVDRV, "Using {} GPU decoder", av_hwdevice_get_type_name(type));
av_codec_ctx->pix_fmt = config->pix_fmt;
return true;
}
}
}
return false;
}
void Codec::InitializeAvCodecContext() {
av_codec_ctx = avcodec_alloc_context3(av_codec);
av_opt_set(av_codec_ctx->priv_data, "tune", "zerolatency", 0);
av_codec_ctx->thread_count = 0;
av_codec_ctx->thread_type &= ~FF_THREAD_FRAME;
}
void Codec::InitializeGpuDecoder() {
if (!CreateGpuAvDevice()) {
av_buffer_unref(&av_gpu_decoder);
return;
}
auto* hw_device_ctx = av_buffer_ref(av_gpu_decoder);
ASSERT_MSG(hw_device_ctx, "av_buffer_ref failed");
av_codec_ctx->hw_device_ctx = hw_device_ctx;
av_codec_ctx->get_format = GetGpuFormat;
}
void Codec::InitializeAvFilters(AVFrame* frame) {
const AVFilter* buffer_src = avfilter_get_by_name("buffer");
const AVFilter* buffer_sink = avfilter_get_by_name("buffersink");
AVFilterInOut* inputs = avfilter_inout_alloc();
AVFilterInOut* outputs = avfilter_inout_alloc();
SCOPE_EXIT({
avfilter_inout_free(&inputs);
avfilter_inout_free(&outputs);
});
// Don't know how to get the accurate time_base but it doesn't matter for yadif filter
// so just use 1/1 to make buffer filter happy
std::string args = fmt::format("video_size={}x{}:pix_fmt={}:time_base=1/1", frame->width,
frame->height, frame->format);
av_filter_graph = avfilter_graph_alloc();
int ret = avfilter_graph_create_filter(&av_filter_src_ctx, buffer_src, "in", args.c_str(),
nullptr, av_filter_graph);
if (ret < 0) {
LOG_ERROR(Service_NVDRV, "avfilter_graph_create_filter source error: {}", ret);
return;
}
ret = avfilter_graph_create_filter(&av_filter_sink_ctx, buffer_sink, "out", nullptr, nullptr,
av_filter_graph);
if (ret < 0) {
LOG_ERROR(Service_NVDRV, "avfilter_graph_create_filter sink error: {}", ret);
return;
}
inputs->name = av_strdup("out");
inputs->filter_ctx = av_filter_sink_ctx;
inputs->pad_idx = 0;
inputs->next = nullptr;
outputs->name = av_strdup("in");
outputs->filter_ctx = av_filter_src_ctx;
outputs->pad_idx = 0;
outputs->next = nullptr;
const char* description = "yadif=1:-1:0";
ret = avfilter_graph_parse_ptr(av_filter_graph, description, &inputs, &outputs, nullptr);
if (ret < 0) {
LOG_ERROR(Service_NVDRV, "avfilter_graph_parse_ptr error: {}", ret);
return;
}
ret = avfilter_graph_config(av_filter_graph, nullptr);
if (ret < 0) {
LOG_ERROR(Service_NVDRV, "avfilter_graph_config error: {}", ret);
return;
}
filters_initialized = true;
}
Codec::~Codec() = default;
void Codec::Initialize() {
const AVCodecID codec = [&] {
switch (current_codec) {
case Host1x::NvdecCommon::VideoCodec::H264:
return AV_CODEC_ID_H264;
case Host1x::NvdecCommon::VideoCodec::VP8:
return AV_CODEC_ID_VP8;
case Host1x::NvdecCommon::VideoCodec::VP9:
return AV_CODEC_ID_VP9;
default:
UNIMPLEMENTED_MSG("Unknown codec {}", current_codec);
return AV_CODEC_ID_NONE;
}
}();
av_codec = avcodec_find_decoder(codec);
InitializeAvCodecContext();
if (Settings::values.nvdec_emulation.GetValue() == Settings::NvdecEmulation::Gpu) {
InitializeGpuDecoder();
}
if (const int res = avcodec_open2(av_codec_ctx, av_codec, nullptr); res < 0) {
LOG_ERROR(Service_NVDRV, "avcodec_open2() Failed with result {}", res);
avcodec_free_context(&av_codec_ctx);
av_buffer_unref(&av_gpu_decoder);
return;
}
if (!av_codec_ctx->hw_device_ctx) {
LOG_INFO(Service_NVDRV, "Using FFmpeg software decoding");
}
initialized = true;
initialized = decode_api.Initialize(current_codec);
}
void Codec::SetTargetCodec(Host1x::NvdecCommon::VideoCodec codec) {
@ -264,14 +35,18 @@ void Codec::Decode() {
if (is_first_frame) {
Initialize();
}
if (!initialized) {
return;
}
// Assemble bitstream.
bool vp9_hidden_frame = false;
const auto& frame_data = [&]() {
size_t configuration_size = 0;
const auto packet_data = [&]() {
switch (current_codec) {
case Tegra::Host1x::NvdecCommon::VideoCodec::H264:
return h264_decoder->ComposeFrame(state, is_first_frame);
return h264_decoder->ComposeFrame(state, &configuration_size, is_first_frame);
case Tegra::Host1x::NvdecCommon::VideoCodec::VP8:
return vp8_decoder->ComposeFrame(state);
case Tegra::Host1x::NvdecCommon::VideoCodec::VP9:
@ -283,89 +58,35 @@ void Codec::Decode() {
return std::span<const u8>{};
}
}();
AVPacketPtr packet{av_packet_alloc(), AVPacketDeleter};
if (!packet) {
LOG_ERROR(Service_NVDRV, "av_packet_alloc failed");
// Send assembled bitstream to decoder.
if (!decode_api.SendPacket(packet_data, configuration_size)) {
return;
}
packet->data = const_cast<u8*>(frame_data.data());
packet->size = static_cast<s32>(frame_data.size());
if (const int res = avcodec_send_packet(av_codec_ctx, packet.get()); res != 0) {
LOG_DEBUG(Service_NVDRV, "avcodec_send_packet error {}", res);
return;
}
// Only receive/store visible frames
// Only receive/store visible frames.
if (vp9_hidden_frame) {
return;
}
AVFramePtr initial_frame{av_frame_alloc(), AVFrameDeleter};
AVFramePtr final_frame{nullptr, AVFrameDeleter};
ASSERT_MSG(initial_frame, "av_frame_alloc initial_frame failed");
if (const int ret = avcodec_receive_frame(av_codec_ctx, initial_frame.get()); ret) {
LOG_DEBUG(Service_NVDRV, "avcodec_receive_frame error {}", ret);
return;
}
if (initial_frame->width == 0 || initial_frame->height == 0) {
LOG_WARNING(Service_NVDRV, "Zero width or height in frame");
return;
}
bool is_interlaced = initial_frame->interlaced_frame != 0;
if (av_codec_ctx->hw_device_ctx) {
final_frame = AVFramePtr{av_frame_alloc(), AVFrameDeleter};
ASSERT_MSG(final_frame, "av_frame_alloc final_frame failed");
// Can't use AV_PIX_FMT_YUV420P and share code with software decoding in vic.cpp
// because Intel drivers crash unless using AV_PIX_FMT_NV12
final_frame->format = PREFERRED_GPU_FMT;
const int ret = av_hwframe_transfer_data(final_frame.get(), initial_frame.get(), 0);
ASSERT_MSG(!ret, "av_hwframe_transfer_data error {}", ret);
} else {
final_frame = std::move(initial_frame);
}
if (final_frame->format != PREFERRED_CPU_FMT && final_frame->format != PREFERRED_GPU_FMT) {
UNIMPLEMENTED_MSG("Unexpected video format: {}", final_frame->format);
return;
}
if (!is_interlaced) {
av_frames.push(std::move(final_frame));
} else {
if (!filters_initialized) {
InitializeAvFilters(final_frame.get());
}
if (const int ret = av_buffersrc_add_frame_flags(av_filter_src_ctx, final_frame.get(),
AV_BUFFERSRC_FLAG_KEEP_REF);
ret) {
LOG_DEBUG(Service_NVDRV, "av_buffersrc_add_frame_flags error {}", ret);
return;
}
while (true) {
auto filter_frame = AVFramePtr{av_frame_alloc(), AVFrameDeleter};
int ret = av_buffersink_get_frame(av_filter_sink_ctx, filter_frame.get());
// Receive output frames from decoder.
decode_api.ReceiveFrames(frames);
if (ret == AVERROR(EAGAIN) || ret == AVERROR(AVERROR_EOF))
break;
if (ret < 0) {
LOG_DEBUG(Service_NVDRV, "av_buffersink_get_frame error {}", ret);
return;
}
av_frames.push(std::move(filter_frame));
}
}
while (av_frames.size() > 10) {
LOG_TRACE(Service_NVDRV, "av_frames.push overflow dropped frame");
av_frames.pop();
while (frames.size() > 10) {
LOG_DEBUG(HW_GPU, "ReceiveFrames overflow, dropped frame");
frames.pop();
}
}
AVFramePtr Codec::GetCurrentFrame() {
std::unique_ptr<FFmpeg::Frame> Codec::GetCurrentFrame() {
// Sometimes VIC will request more frames than have been decoded.
// in this case, return a nullptr and don't overwrite previous frame data
if (av_frames.empty()) {
return AVFramePtr{nullptr, AVFrameDeleter};
// in this case, return a blank frame and don't overwrite previous data.
if (frames.empty()) {
return {};
}
AVFramePtr frame = std::move(av_frames.front());
av_frames.pop();
auto frame = std::move(frames.front());
frames.pop();
return frame;
}

View file

@ -4,28 +4,15 @@
#pragma once
#include <memory>
#include <optional>
#include <string_view>
#include <queue>
#include "common/common_types.h"
#include "video_core/host1x/ffmpeg/ffmpeg.h"
#include "video_core/host1x/nvdec_common.h"
extern "C" {
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <libavcodec/avcodec.h>
#include <libavfilter/avfilter.h>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
}
namespace Tegra {
void AVFrameDeleter(AVFrame* ptr);
using AVFramePtr = std::unique_ptr<AVFrame, decltype(&AVFrameDeleter)>;
namespace Decoder {
class H264;
class VP8;
@ -51,7 +38,7 @@ public:
void Decode();
/// Returns next decoded frame
[[nodiscard]] AVFramePtr GetCurrentFrame();
[[nodiscard]] std::unique_ptr<FFmpeg::Frame> GetCurrentFrame();
/// Returns the value of current_codec
[[nodiscard]] Host1x::NvdecCommon::VideoCodec GetCurrentCodec() const;
@ -60,25 +47,9 @@ public:
[[nodiscard]] std::string_view GetCurrentCodecName() const;
private:
void InitializeAvCodecContext();
void InitializeAvFilters(AVFrame* frame);
void InitializeGpuDecoder();
bool CreateGpuAvDevice();
bool initialized{};
bool filters_initialized{};
Host1x::NvdecCommon::VideoCodec current_codec{Host1x::NvdecCommon::VideoCodec::None};
const AVCodec* av_codec{nullptr};
AVCodecContext* av_codec_ctx{nullptr};
AVBufferRef* av_gpu_decoder{nullptr};
AVFilterContext* av_filter_src_ctx{nullptr};
AVFilterContext* av_filter_sink_ctx{nullptr};
AVFilterGraph* av_filter_graph{nullptr};
FFmpeg::DecodeApi decode_api;
Host1x::Host1x& host1x;
const Host1x::NvdecCommon::NvdecRegisters& state;
@ -86,7 +57,7 @@ private:
std::unique_ptr<Decoder::VP8> vp8_decoder;
std::unique_ptr<Decoder::VP9> vp9_decoder;
std::queue<AVFramePtr> av_frames{};
std::queue<std::unique_ptr<FFmpeg::Frame>> frames{};
};
} // namespace Tegra

View file

@ -30,7 +30,7 @@ H264::H264(Host1x::Host1x& host1x_) : host1x{host1x_} {}
H264::~H264() = default;
std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state,
bool is_first_frame) {
size_t* out_configuration_size, bool is_first_frame) {
H264DecoderContext context;
host1x.MemoryManager().ReadBlock(state.picture_info_offset, &context,
sizeof(H264DecoderContext));
@ -39,6 +39,7 @@ std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters
if (!is_first_frame && frame_number != 0) {
frame.resize_destructive(context.stream_len);
host1x.MemoryManager().ReadBlock(state.frame_bitstream_offset, frame.data(), frame.size());
*out_configuration_size = 0;
return frame;
}
@ -157,6 +158,7 @@ std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters
frame.resize(encoded_header.size() + context.stream_len);
std::memcpy(frame.data(), encoded_header.data(), encoded_header.size());
*out_configuration_size = encoded_header.size();
host1x.MemoryManager().ReadBlock(state.frame_bitstream_offset,
frame.data() + encoded_header.size(), context.stream_len);

View file

@ -67,6 +67,7 @@ public:
/// Compose the H264 frame for FFmpeg decoding
[[nodiscard]] std::span<const u8> ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state,
size_t* out_configuration_size,
bool is_first_frame = false);
private:

View file

@ -0,0 +1,419 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "video_core/host1x/ffmpeg/ffmpeg.h"
extern "C" {
#ifdef LIBVA_FOUND
// for querying VAAPI driver information
#include <libavutil/hwcontext_vaapi.h>
#endif
}
namespace FFmpeg {
namespace {
constexpr AVPixelFormat PreferredGpuFormat = AV_PIX_FMT_NV12;
constexpr AVPixelFormat PreferredCpuFormat = AV_PIX_FMT_YUV420P;
constexpr std::array PreferredGpuDecoders = {
AV_HWDEVICE_TYPE_CUDA,
#ifdef _WIN32
AV_HWDEVICE_TYPE_D3D11VA,
AV_HWDEVICE_TYPE_DXVA2,
#elif defined(__unix__)
AV_HWDEVICE_TYPE_VAAPI,
AV_HWDEVICE_TYPE_VDPAU,
#endif
// last resort for Linux Flatpak (w/ NVIDIA)
AV_HWDEVICE_TYPE_VULKAN,
};
AVPixelFormat GetGpuFormat(AVCodecContext* codec_context, const AVPixelFormat* pix_fmts) {
for (const AVPixelFormat* p = pix_fmts; *p != AV_PIX_FMT_NONE; ++p) {
if (*p == codec_context->pix_fmt) {
return codec_context->pix_fmt;
}
}
LOG_INFO(HW_GPU, "Could not find compatible GPU AV format, falling back to CPU");
av_buffer_unref(&codec_context->hw_device_ctx);
codec_context->pix_fmt = PreferredCpuFormat;
return codec_context->pix_fmt;
}
std::string AVError(int errnum) {
char errbuf[AV_ERROR_MAX_STRING_SIZE] = {};
av_make_error_string(errbuf, sizeof(errbuf) - 1, errnum);
return errbuf;
}
} // namespace
Packet::Packet(std::span<const u8> data) {
m_packet = av_packet_alloc();
m_packet->data = const_cast<u8*>(data.data());
m_packet->size = static_cast<s32>(data.size());
}
Packet::~Packet() {
av_packet_free(&m_packet);
}
Frame::Frame() {
m_frame = av_frame_alloc();
}
Frame::~Frame() {
av_frame_free(&m_frame);
}
Decoder::Decoder(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
const AVCodecID av_codec = [&] {
switch (codec) {
case Tegra::Host1x::NvdecCommon::VideoCodec::H264:
return AV_CODEC_ID_H264;
case Tegra::Host1x::NvdecCommon::VideoCodec::VP8:
return AV_CODEC_ID_VP8;
case Tegra::Host1x::NvdecCommon::VideoCodec::VP9:
return AV_CODEC_ID_VP9;
default:
UNIMPLEMENTED_MSG("Unknown codec {}", codec);
return AV_CODEC_ID_NONE;
}
}();
m_codec = avcodec_find_decoder(av_codec);
}
bool Decoder::SupportsDecodingOnDevice(AVPixelFormat* out_pix_fmt, AVHWDeviceType type) const {
for (int i = 0;; i++) {
const AVCodecHWConfig* config = avcodec_get_hw_config(m_codec, i);
if (!config) {
LOG_DEBUG(HW_GPU, "{} decoder does not support device type {}", m_codec->name,
av_hwdevice_get_type_name(type));
break;
}
if ((config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX) != 0 &&
config->device_type == type) {
LOG_INFO(HW_GPU, "Using {} GPU decoder", av_hwdevice_get_type_name(type));
*out_pix_fmt = config->pix_fmt;
return true;
}
}
return false;
}
std::vector<AVHWDeviceType> HardwareContext::GetSupportedDeviceTypes() {
std::vector<AVHWDeviceType> types;
AVHWDeviceType current_device_type = AV_HWDEVICE_TYPE_NONE;
while (true) {
current_device_type = av_hwdevice_iterate_types(current_device_type);
if (current_device_type == AV_HWDEVICE_TYPE_NONE) {
return types;
}
types.push_back(current_device_type);
}
}
HardwareContext::~HardwareContext() {
av_buffer_unref(&m_gpu_decoder);
}
bool HardwareContext::InitializeForDecoder(DecoderContext& decoder_context,
const Decoder& decoder) {
const auto supported_types = GetSupportedDeviceTypes();
for (const auto type : PreferredGpuDecoders) {
AVPixelFormat hw_pix_fmt;
if (std::ranges::find(supported_types, type) == supported_types.end()) {
LOG_DEBUG(HW_GPU, "{} explicitly unsupported", av_hwdevice_get_type_name(type));
continue;
}
if (!this->InitializeWithType(type)) {
continue;
}
if (decoder.SupportsDecodingOnDevice(&hw_pix_fmt, type)) {
decoder_context.InitializeHardwareDecoder(*this, hw_pix_fmt);
return true;
}
}
return false;
}
bool HardwareContext::InitializeWithType(AVHWDeviceType type) {
av_buffer_unref(&m_gpu_decoder);
if (const int ret = av_hwdevice_ctx_create(&m_gpu_decoder, type, nullptr, nullptr, 0);
ret < 0) {
LOG_DEBUG(HW_GPU, "av_hwdevice_ctx_create({}) failed: {}", av_hwdevice_get_type_name(type),
AVError(ret));
return false;
}
#ifdef LIBVA_FOUND
if (type == AV_HWDEVICE_TYPE_VAAPI) {
// We need to determine if this is an impersonated VAAPI driver.
auto* hwctx = reinterpret_cast<AVHWDeviceContext*>(m_gpu_decoder->data);
auto* vactx = static_cast<AVVAAPIDeviceContext*>(hwctx->hwctx);
const char* vendor_name = vaQueryVendorString(vactx->display);
if (strstr(vendor_name, "VDPAU backend")) {
// VDPAU impersonated VAAPI impls are super buggy, we need to skip them.
LOG_DEBUG(HW_GPU, "Skipping VDPAU impersonated VAAPI driver");
return false;
} else {
// According to some user testing, certain VAAPI drivers (Intel?) could be buggy.
// Log the driver name just in case.
LOG_DEBUG(HW_GPU, "Using VAAPI driver: {}", vendor_name);
}
}
#endif
return true;
}
DecoderContext::DecoderContext(const Decoder& decoder) {
m_codec_context = avcodec_alloc_context3(decoder.GetCodec());
av_opt_set(m_codec_context->priv_data, "tune", "zerolatency", 0);
m_codec_context->thread_count = 0;
m_codec_context->thread_type &= ~FF_THREAD_FRAME;
}
DecoderContext::~DecoderContext() {
av_buffer_unref(&m_codec_context->hw_device_ctx);
avcodec_free_context(&m_codec_context);
}
void DecoderContext::InitializeHardwareDecoder(const HardwareContext& context,
AVPixelFormat hw_pix_fmt) {
m_codec_context->hw_device_ctx = av_buffer_ref(context.GetBufferRef());
m_codec_context->get_format = GetGpuFormat;
m_codec_context->pix_fmt = hw_pix_fmt;
}
bool DecoderContext::OpenContext(const Decoder& decoder) {
if (const int ret = avcodec_open2(m_codec_context, decoder.GetCodec(), nullptr); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_open2 error: {}", AVError(ret));
return false;
}
if (!m_codec_context->hw_device_ctx) {
LOG_INFO(HW_GPU, "Using FFmpeg software decoding");
}
return true;
}
bool DecoderContext::SendPacket(const Packet& packet) {
if (const int ret = avcodec_send_packet(m_codec_context, packet.GetPacket()); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_send_packet error: {}", AVError(ret));
return false;
}
return true;
}
std::unique_ptr<Frame> DecoderContext::ReceiveFrame(bool* out_is_interlaced) {
auto dst_frame = std::make_unique<Frame>();
const auto ReceiveImpl = [&](AVFrame* frame) {
if (const int ret = avcodec_receive_frame(m_codec_context, frame); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_receive_frame error: {}", AVError(ret));
return false;
}
*out_is_interlaced = frame->interlaced_frame != 0;
return true;
};
if (m_codec_context->hw_device_ctx) {
// If we have a hardware context, make a separate frame here to receive the
// hardware result before sending it to the output.
Frame intermediate_frame;
if (!ReceiveImpl(intermediate_frame.GetFrame())) {
return {};
}
dst_frame->SetFormat(PreferredGpuFormat);
if (const int ret =
av_hwframe_transfer_data(dst_frame->GetFrame(), intermediate_frame.GetFrame(), 0);
ret < 0) {
LOG_ERROR(HW_GPU, "av_hwframe_transfer_data error: {}", AVError(ret));
return {};
}
} else {
// Otherwise, decode the frame as normal.
if (!ReceiveImpl(dst_frame->GetFrame())) {
return {};
}
}
return dst_frame;
}
DeinterlaceFilter::DeinterlaceFilter(const Frame& frame) {
const AVFilter* buffer_src = avfilter_get_by_name("buffer");
const AVFilter* buffer_sink = avfilter_get_by_name("buffersink");
AVFilterInOut* inputs = avfilter_inout_alloc();
AVFilterInOut* outputs = avfilter_inout_alloc();
SCOPE_EXIT({
avfilter_inout_free(&inputs);
avfilter_inout_free(&outputs);
});
// Don't know how to get the accurate time_base but it doesn't matter for yadif filter
// so just use 1/1 to make buffer filter happy
std::string args = fmt::format("video_size={}x{}:pix_fmt={}:time_base=1/1", frame.GetWidth(),
frame.GetHeight(), static_cast<int>(frame.GetPixelFormat()));
m_filter_graph = avfilter_graph_alloc();
int ret = avfilter_graph_create_filter(&m_source_context, buffer_src, "in", args.c_str(),
nullptr, m_filter_graph);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_create_filter source error: {}", AVError(ret));
return;
}
ret = avfilter_graph_create_filter(&m_sink_context, buffer_sink, "out", nullptr, nullptr,
m_filter_graph);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_create_filter sink error: {}", AVError(ret));
return;
}
inputs->name = av_strdup("out");
inputs->filter_ctx = m_sink_context;
inputs->pad_idx = 0;
inputs->next = nullptr;
outputs->name = av_strdup("in");
outputs->filter_ctx = m_source_context;
outputs->pad_idx = 0;
outputs->next = nullptr;
const char* description = "yadif=1:-1:0";
ret = avfilter_graph_parse_ptr(m_filter_graph, description, &inputs, &outputs, nullptr);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_parse_ptr error: {}", AVError(ret));
return;
}
ret = avfilter_graph_config(m_filter_graph, nullptr);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_config error: {}", AVError(ret));
return;
}
m_initialized = true;
}
bool DeinterlaceFilter::AddSourceFrame(const Frame& frame) {
if (const int ret = av_buffersrc_add_frame_flags(m_source_context, frame.GetFrame(),
AV_BUFFERSRC_FLAG_KEEP_REF);
ret < 0) {
LOG_ERROR(HW_GPU, "av_buffersrc_add_frame_flags error: {}", AVError(ret));
return false;
}
return true;
}
std::unique_ptr<Frame> DeinterlaceFilter::DrainSinkFrame() {
auto dst_frame = std::make_unique<Frame>();
const int ret = av_buffersink_get_frame(m_sink_context, dst_frame->GetFrame());
if (ret == AVERROR(EAGAIN) || ret == AVERROR(AVERROR_EOF)) {
return {};
}
if (ret < 0) {
LOG_ERROR(HW_GPU, "av_buffersink_get_frame error: {}", AVError(ret));
return {};
}
return dst_frame;
}
DeinterlaceFilter::~DeinterlaceFilter() {
avfilter_graph_free(&m_filter_graph);
}
void DecodeApi::Reset() {
m_deinterlace_filter.reset();
m_hardware_context.reset();
m_decoder_context.reset();
m_decoder.reset();
}
bool DecodeApi::Initialize(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
this->Reset();
m_decoder.emplace(codec);
m_decoder_context.emplace(*m_decoder);
// Enable GPU decoding if requested.
if (Settings::values.nvdec_emulation.GetValue() == Settings::NvdecEmulation::Gpu) {
m_hardware_context.emplace();
m_hardware_context->InitializeForDecoder(*m_decoder_context, *m_decoder);
}
// Open the decoder context.
if (!m_decoder_context->OpenContext(*m_decoder)) {
this->Reset();
return false;
}
return true;
}
bool DecodeApi::SendPacket(std::span<const u8> packet_data, size_t configuration_size) {
FFmpeg::Packet packet(packet_data);
return m_decoder_context->SendPacket(packet);
}
void DecodeApi::ReceiveFrames(std::queue<std::unique_ptr<Frame>>& frame_queue) {
// Receive raw frame from decoder.
bool is_interlaced;
auto frame = m_decoder_context->ReceiveFrame(&is_interlaced);
if (!frame) {
return;
}
if (!is_interlaced) {
// If the frame is not interlaced, we can pend it now.
frame_queue.push(std::move(frame));
} else {
// Create the deinterlacer if needed.
if (!m_deinterlace_filter) {
m_deinterlace_filter.emplace(*frame);
}
// Add the frame we just received.
if (!m_deinterlace_filter->AddSourceFrame(*frame)) {
return;
}
// Pend output fields.
while (true) {
auto filter_frame = m_deinterlace_filter->DrainSinkFrame();
if (!filter_frame) {
break;
}
frame_queue.push(std::move(filter_frame));
}
}
}
} // namespace FFmpeg

View file

@ -0,0 +1,213 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include <optional>
#include <span>
#include <vector>
#include <queue>
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "video_core/host1x/nvdec_common.h"
extern "C" {
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <libavcodec/avcodec.h>
#include <libavfilter/avfilter.h>
#include <libavfilter/buffersink.h>
#include <libavfilter/buffersrc.h>
#include <libavutil/avutil.h>
#include <libavutil/opt.h>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
}
namespace FFmpeg {
class Packet;
class Frame;
class Decoder;
class HardwareContext;
class DecoderContext;
class DeinterlaceFilter;
// Wraps an AVPacket, a container for compressed bitstream data.
class Packet {
public:
YUZU_NON_COPYABLE(Packet);
YUZU_NON_MOVEABLE(Packet);
explicit Packet(std::span<const u8> data);
~Packet();
AVPacket* GetPacket() const {
return m_packet;
}
private:
AVPacket* m_packet{};
};
// Wraps an AVFrame, a container for audio and video stream data.
class Frame {
public:
YUZU_NON_COPYABLE(Frame);
YUZU_NON_MOVEABLE(Frame);
explicit Frame();
~Frame();
int GetWidth() const {
return m_frame->width;
}
int GetHeight() const {
return m_frame->height;
}
AVPixelFormat GetPixelFormat() const {
return static_cast<AVPixelFormat>(m_frame->format);
}
int GetStride(int plane) const {
return m_frame->linesize[plane];
}
int* GetStrides() const {
return m_frame->linesize;
}
u8* GetData(int plane) const {
return m_frame->data[plane];
}
u8** GetPlanes() const {
return m_frame->data;
}
void SetFormat(int format) {
m_frame->format = format;
}
AVFrame* GetFrame() const {
return m_frame;
}
private:
AVFrame* m_frame{};
};
// Wraps an AVCodec, a type containing information about a codec.
class Decoder {
public:
YUZU_NON_COPYABLE(Decoder);
YUZU_NON_MOVEABLE(Decoder);
explicit Decoder(Tegra::Host1x::NvdecCommon::VideoCodec codec);
~Decoder() = default;
bool SupportsDecodingOnDevice(AVPixelFormat* out_pix_fmt, AVHWDeviceType type) const;
const AVCodec* GetCodec() const {
return m_codec;
}
private:
const AVCodec* m_codec{};
};
// Wraps AVBufferRef for an accelerated decoder.
class HardwareContext {
public:
YUZU_NON_COPYABLE(HardwareContext);
YUZU_NON_MOVEABLE(HardwareContext);
static std::vector<AVHWDeviceType> GetSupportedDeviceTypes();
explicit HardwareContext() = default;
~HardwareContext();
bool InitializeForDecoder(DecoderContext& decoder_context, const Decoder& decoder);
AVBufferRef* GetBufferRef() const {
return m_gpu_decoder;
}
private:
bool InitializeWithType(AVHWDeviceType type);
AVBufferRef* m_gpu_decoder{};
};
// Wraps an AVCodecContext.
class DecoderContext {
public:
YUZU_NON_COPYABLE(DecoderContext);
YUZU_NON_MOVEABLE(DecoderContext);
explicit DecoderContext(const Decoder& decoder);
~DecoderContext();
void InitializeHardwareDecoder(const HardwareContext& context, AVPixelFormat hw_pix_fmt);
bool OpenContext(const Decoder& decoder);
bool SendPacket(const Packet& packet);
std::unique_ptr<Frame> ReceiveFrame(bool* out_is_interlaced);
AVCodecContext* GetCodecContext() const {
return m_codec_context;
}
private:
AVCodecContext* m_codec_context{};
};
// Wraps an AVFilterGraph.
class DeinterlaceFilter {
public:
YUZU_NON_COPYABLE(DeinterlaceFilter);
YUZU_NON_MOVEABLE(DeinterlaceFilter);
explicit DeinterlaceFilter(const Frame& frame);
~DeinterlaceFilter();
bool AddSourceFrame(const Frame& frame);
std::unique_ptr<Frame> DrainSinkFrame();
private:
AVFilterGraph* m_filter_graph{};
AVFilterContext* m_source_context{};
AVFilterContext* m_sink_context{};
bool m_initialized{};
};
class DecodeApi {
public:
YUZU_NON_COPYABLE(DecodeApi);
YUZU_NON_MOVEABLE(DecodeApi);
DecodeApi() = default;
~DecodeApi() = default;
bool Initialize(Tegra::Host1x::NvdecCommon::VideoCodec codec);
void Reset();
bool SendPacket(std::span<const u8> packet_data, size_t configuration_size);
void ReceiveFrames(std::queue<std::unique_ptr<Frame>>& frame_queue);
private:
std::optional<FFmpeg::Decoder> m_decoder;
std::optional<FFmpeg::DecoderContext> m_decoder_context;
std::optional<FFmpeg::HardwareContext> m_hardware_context;
std::optional<FFmpeg::DeinterlaceFilter> m_deinterlace_filter;
};
} // namespace FFmpeg

View file

@ -28,7 +28,7 @@ void Nvdec::ProcessMethod(u32 method, u32 argument) {
}
}
AVFramePtr Nvdec::GetFrame() {
std::unique_ptr<FFmpeg::Frame> Nvdec::GetFrame() {
return codec->GetCurrentFrame();
}

View file

@ -23,7 +23,7 @@ public:
void ProcessMethod(u32 method, u32 argument);
/// Return most recently decoded frame
[[nodiscard]] AVFramePtr GetFrame();
[[nodiscard]] std::unique_ptr<FFmpeg::Frame> GetFrame();
private:
/// Invoke codec to decode a frame

View file

@ -82,27 +82,26 @@ void Vic::Execute() {
return;
}
const VicConfig config{host1x.MemoryManager().Read<u64>(config_struct_address + 0x20)};
const AVFramePtr frame_ptr = nvdec_processor->GetFrame();
const auto* frame = frame_ptr.get();
auto frame = nvdec_processor->GetFrame();
if (!frame) {
return;
}
const u64 surface_width = config.surface_width_minus1 + 1;
const u64 surface_height = config.surface_height_minus1 + 1;
if (static_cast<u64>(frame->width) != surface_width ||
static_cast<u64>(frame->height) != surface_height) {
if (static_cast<u64>(frame->GetWidth()) != surface_width ||
static_cast<u64>(frame->GetHeight()) != surface_height) {
// TODO: Properly support multiple video streams with differing frame dimensions
LOG_WARNING(Service_NVDRV, "Frame dimensions {}x{} don't match surface dimensions {}x{}",
frame->width, frame->height, surface_width, surface_height);
frame->GetWidth(), frame->GetHeight(), surface_width, surface_height);
}
switch (config.pixel_format) {
case VideoPixelFormat::RGBA8:
case VideoPixelFormat::BGRA8:
case VideoPixelFormat::RGBX8:
WriteRGBFrame(frame, config);
WriteRGBFrame(std::move(frame), config);
break;
case VideoPixelFormat::YUV420:
WriteYUVFrame(frame, config);
WriteYUVFrame(std::move(frame), config);
break;
default:
UNIMPLEMENTED_MSG("Unknown video pixel format {:X}", config.pixel_format.Value());
@ -110,10 +109,14 @@ void Vic::Execute() {
}
}
void Vic::WriteRGBFrame(const AVFrame* frame, const VicConfig& config) {
void Vic::WriteRGBFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config) {
LOG_TRACE(Service_NVDRV, "Writing RGB Frame");
if (!scaler_ctx || frame->width != scaler_width || frame->height != scaler_height) {
const auto frame_width = frame->GetWidth();
const auto frame_height = frame->GetHeight();
const auto frame_format = frame->GetPixelFormat();
if (!scaler_ctx || frame_width != scaler_width || frame_height != scaler_height) {
const AVPixelFormat target_format = [pixel_format = config.pixel_format]() {
switch (pixel_format) {
case VideoPixelFormat::RGBA8:
@ -129,27 +132,26 @@ void Vic::WriteRGBFrame(const AVFrame* frame, const VicConfig& config) {
sws_freeContext(scaler_ctx);
// Frames are decoded into either YUV420 or NV12 formats. Convert to desired RGB format
scaler_ctx = sws_getContext(frame->width, frame->height,
static_cast<AVPixelFormat>(frame->format), frame->width,
frame->height, target_format, 0, nullptr, nullptr, nullptr);
scaler_width = frame->width;
scaler_height = frame->height;
scaler_ctx = sws_getContext(frame_width, frame_height, frame_format, frame_width,
frame_height, target_format, 0, nullptr, nullptr, nullptr);
scaler_width = frame_width;
scaler_height = frame_height;
converted_frame_buffer.reset();
}
if (!converted_frame_buffer) {
const size_t frame_size = frame->width * frame->height * 4;
const size_t frame_size = frame_width * frame_height * 4;
converted_frame_buffer = AVMallocPtr{static_cast<u8*>(av_malloc(frame_size)), av_free};
}
const std::array<int, 4> converted_stride{frame->width * 4, frame->height * 4, 0, 0};
const std::array<int, 4> converted_stride{frame_width * 4, frame_height * 4, 0, 0};
u8* const converted_frame_buf_addr{converted_frame_buffer.get()};
sws_scale(scaler_ctx, frame->data, frame->linesize, 0, frame->height, &converted_frame_buf_addr,
converted_stride.data());
sws_scale(scaler_ctx, frame->GetPlanes(), frame->GetStrides(), 0, frame_height,
&converted_frame_buf_addr, converted_stride.data());
// Use the minimum of surface/frame dimensions to avoid buffer overflow.
const u32 surface_width = static_cast<u32>(config.surface_width_minus1) + 1;
const u32 surface_height = static_cast<u32>(config.surface_height_minus1) + 1;
const u32 width = std::min(surface_width, static_cast<u32>(frame->width));
const u32 height = std::min(surface_height, static_cast<u32>(frame->height));
const u32 width = std::min(surface_width, static_cast<u32>(frame_width));
const u32 height = std::min(surface_height, static_cast<u32>(frame_height));
const u32 blk_kind = static_cast<u32>(config.block_linear_kind);
if (blk_kind != 0) {
// swizzle pitch linear to block linear
@ -169,23 +171,23 @@ void Vic::WriteRGBFrame(const AVFrame* frame, const VicConfig& config) {
}
}
void Vic::WriteYUVFrame(const AVFrame* frame, const VicConfig& config) {
void Vic::WriteYUVFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config) {
LOG_TRACE(Service_NVDRV, "Writing YUV420 Frame");
const std::size_t surface_width = config.surface_width_minus1 + 1;
const std::size_t surface_height = config.surface_height_minus1 + 1;
const std::size_t aligned_width = (surface_width + 0xff) & ~0xffUL;
// Use the minimum of surface/frame dimensions to avoid buffer overflow.
const auto frame_width = std::min(surface_width, static_cast<size_t>(frame->width));
const auto frame_height = std::min(surface_height, static_cast<size_t>(frame->height));
const auto frame_width = std::min(surface_width, static_cast<size_t>(frame->GetWidth()));
const auto frame_height = std::min(surface_height, static_cast<size_t>(frame->GetHeight()));
const auto stride = static_cast<size_t>(frame->linesize[0]);
const auto stride = static_cast<size_t>(frame->GetStride(0));
luma_buffer.resize_destructive(aligned_width * surface_height);
chroma_buffer.resize_destructive(aligned_width * surface_height / 2);
// Populate luma buffer
const u8* luma_src = frame->data[0];
const u8* luma_src = frame->GetData(0);
for (std::size_t y = 0; y < frame_height; ++y) {
const std::size_t src = y * stride;
const std::size_t dst = y * aligned_width;
@ -196,16 +198,16 @@ void Vic::WriteYUVFrame(const AVFrame* frame, const VicConfig& config) {
// Chroma
const std::size_t half_height = frame_height / 2;
const auto half_stride = static_cast<size_t>(frame->linesize[1]);
const auto half_stride = static_cast<size_t>(frame->GetStride(1));
switch (frame->format) {
switch (frame->GetPixelFormat()) {
case AV_PIX_FMT_YUV420P: {
// Frame from FFmpeg software
// Populate chroma buffer from both channels with interleaving.
const std::size_t half_width = frame_width / 2;
u8* chroma_buffer_data = chroma_buffer.data();
const u8* chroma_b_src = frame->data[1];
const u8* chroma_r_src = frame->data[2];
const u8* chroma_b_src = frame->GetData(1);
const u8* chroma_r_src = frame->GetData(2);
for (std::size_t y = 0; y < half_height; ++y) {
const std::size_t src = y * half_stride;
const std::size_t dst = y * aligned_width;
@ -219,7 +221,7 @@ void Vic::WriteYUVFrame(const AVFrame* frame, const VicConfig& config) {
case AV_PIX_FMT_NV12: {
// Frame from VA-API hardware
// This is already interleaved so just copy
const u8* chroma_src = frame->data[1];
const u8* chroma_src = frame->GetData(1);
for (std::size_t y = 0; y < half_height; ++y) {
const std::size_t src = y * stride;
const std::size_t dst = y * aligned_width;

View file

@ -39,9 +39,9 @@ public:
private:
void Execute();
void WriteRGBFrame(const AVFrame* frame, const VicConfig& config);
void WriteRGBFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config);
void WriteYUVFrame(const AVFrame* frame, const VicConfig& config);
void WriteYUVFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config);
Host1x& host1x;
std::shared_ptr<Tegra::Host1x::Nvdec> nvdec_processor;

View file

@ -266,7 +266,7 @@ void QueryCacheBase<Traits>::CounterReport(GPUVAddr addr, QueryType counter_type
return;
}
if (False(query_base->flags & QueryFlagBits::IsFinalValueSynced)) [[unlikely]] {
UNREACHABLE();
ASSERT(false);
return;
}
query_base->value += streamer->GetAmmendValue();

View file

@ -3,6 +3,7 @@
#include "common/alignment.h"
#include "core/memory.h"
#include "video_core/control/channel_state.h"
#include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_null/null_rasterizer.h"
@ -99,8 +100,14 @@ bool RasterizerNull::AccelerateDisplay(const Tegra::FramebufferConfig& config,
}
void RasterizerNull::LoadDiskResources(u64 title_id, std::stop_token stop_loading,
const VideoCore::DiskResourceLoadCallback& callback) {}
void RasterizerNull::InitializeChannel(Tegra::Control::ChannelState& channel) {}
void RasterizerNull::BindChannel(Tegra::Control::ChannelState& channel) {}
void RasterizerNull::ReleaseChannel(s32 channel_id) {}
void RasterizerNull::InitializeChannel(Tegra::Control::ChannelState& channel) {
CreateChannel(channel);
}
void RasterizerNull::BindChannel(Tegra::Control::ChannelState& channel) {
BindToChannel(channel.bind_id);
}
void RasterizerNull::ReleaseChannel(s32 channel_id) {
EraseChannel(channel_id);
}
} // namespace Null

View file

@ -178,13 +178,14 @@ void BufferCacheRuntime::CopyBuffer(GLuint dst_buffer, Buffer& src_buffer,
}
void BufferCacheRuntime::CopyBuffer(Buffer& dst_buffer, GLuint src_buffer,
std::span<const VideoCommon::BufferCopy> copies, bool barrier) {
std::span<const VideoCommon::BufferCopy> copies, bool barrier,
bool) {
CopyBuffer(dst_buffer.Handle(), src_buffer, copies, barrier);
}
void BufferCacheRuntime::CopyBuffer(Buffer& dst_buffer, Buffer& src_buffer,
std::span<const VideoCommon::BufferCopy> copies) {
CopyBuffer(dst_buffer.Handle(), src_buffer.Handle(), copies);
std::span<const VideoCommon::BufferCopy> copies, bool) {
CopyBuffer(dst_buffer.Handle(), src_buffer.Handle(), copies, true);
}
void BufferCacheRuntime::PreCopyBarrier() {

View file

@ -30,6 +30,8 @@ public:
void MakeResident(GLenum access) noexcept;
void MarkUsage(u64 offset, u64 size) {}
[[nodiscard]] GLuint View(u32 offset, u32 size, VideoCore::Surface::PixelFormat format);
[[nodiscard]] GLuint64EXT HostGpuAddr() const noexcept {
@ -66,22 +68,29 @@ public:
[[nodiscard]] StagingBufferMap DownloadStagingBuffer(size_t size);
bool CanReorderUpload(const Buffer&, std::span<const VideoCommon::BufferCopy>) {
return false;
}
void CopyBuffer(GLuint dst_buffer, GLuint src_buffer,
std::span<const VideoCommon::BufferCopy> copies, bool barrier = true);
std::span<const VideoCommon::BufferCopy> copies, bool barrier);
void CopyBuffer(GLuint dst_buffer, Buffer& src_buffer,
std::span<const VideoCommon::BufferCopy> copies, bool barrier = true);
std::span<const VideoCommon::BufferCopy> copies, bool barrier);
void CopyBuffer(Buffer& dst_buffer, GLuint src_buffer,
std::span<const VideoCommon::BufferCopy> copies, bool barrier = true);
std::span<const VideoCommon::BufferCopy> copies, bool barrier,
bool can_reorder_upload = false);
void CopyBuffer(Buffer& dst_buffer, Buffer& src_buffer,
std::span<const VideoCommon::BufferCopy> copies);
std::span<const VideoCommon::BufferCopy> copies, bool);
void PreCopyBarrier();
void PostCopyBarrier();
void Finish();
void TickFrame(VideoCommon::SlotVector<Buffer>&) noexcept {}
void ClearBuffer(Buffer& dest_buffer, u32 offset, size_t size, u32 value);
void BindIndexBuffer(Buffer& buffer, u32 offset, u32 size);

View file

@ -559,7 +559,9 @@ void GraphicsPipeline::ConfigureImpl(bool is_indexed) {
}
void GraphicsPipeline::ConfigureTransformFeedbackImpl() const {
glTransformFeedbackAttribsNV(num_xfb_attribs, xfb_attribs.data(), GL_SEPARATE_ATTRIBS);
const GLenum buffer_mode =
num_xfb_buffers_active == 1 ? GL_INTERLEAVED_ATTRIBS : GL_SEPARATE_ATTRIBS;
glTransformFeedbackAttribsNV(num_xfb_attribs, xfb_attribs.data(), buffer_mode);
}
void GraphicsPipeline::GenerateTransformFeedbackState() {
@ -567,12 +569,14 @@ void GraphicsPipeline::GenerateTransformFeedbackState() {
// when this is required.
GLint* cursor{xfb_attribs.data()};
num_xfb_buffers_active = 0;
for (size_t feedback = 0; feedback < Maxwell::NumTransformFeedbackBuffers; ++feedback) {
const auto& layout = key.xfb_state.layouts[feedback];
UNIMPLEMENTED_IF_MSG(layout.stride != layout.varying_count * 4, "Stride padding");
if (layout.varying_count == 0) {
continue;
}
num_xfb_buffers_active++;
const auto& locations = key.xfb_state.varyings[feedback];
std::optional<u32> current_index;

View file

@ -154,6 +154,7 @@ private:
static constexpr std::size_t XFB_ENTRY_STRIDE = 3;
GLsizei num_xfb_attribs{};
u32 num_xfb_buffers_active{};
std::array<GLint, 128 * XFB_ENTRY_STRIDE * Maxwell::NumTransformFeedbackBuffers> xfb_attribs{};
std::mutex built_mutex;

View file

@ -555,7 +555,7 @@ void RasterizerOpenGL::OnCacheInvalidation(VAddr addr, u64 size) {
}
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.CachedWriteMemory(addr, size);
buffer_cache.WriteMemory(addr, size);
}
shader_cache.InvalidateRegion(addr, size);
}

View file

@ -132,16 +132,12 @@ void RendererVulkan::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) {
const bool use_accelerated =
rasterizer.AccelerateDisplay(*framebuffer, framebuffer_addr, framebuffer->stride);
const bool is_srgb = use_accelerated && screen_info.is_srgb;
RenderScreenshot(*framebuffer, use_accelerated);
{
std::scoped_lock lock{rasterizer.LockCaches()};
RenderScreenshot(*framebuffer, use_accelerated);
Frame* frame = present_manager.GetRenderFrame();
blit_screen.DrawToSwapchain(frame, *framebuffer, use_accelerated, is_srgb);
scheduler.Flush(*frame->render_ready);
present_manager.Present(frame);
}
Frame* frame = present_manager.GetRenderFrame();
blit_screen.DrawToSwapchain(frame, *framebuffer, use_accelerated, is_srgb);
scheduler.Flush(*frame->render_ready);
present_manager.Present(frame);
gpu.RendererFrameEndNotify();
rasterizer.TickFrame();

View file

@ -137,6 +137,56 @@ BlitScreen::BlitScreen(Core::Memory::Memory& cpu_memory_, Core::Frontend::EmuWin
BlitScreen::~BlitScreen() = default;
static Common::Rectangle<f32> NormalizeCrop(const Tegra::FramebufferConfig& framebuffer,
const ScreenInfo& screen_info) {
f32 left, top, right, bottom;
if (!framebuffer.crop_rect.IsEmpty()) {
// If crop rectangle is not empty, apply properties from rectangle.
left = static_cast<f32>(framebuffer.crop_rect.left);
top = static_cast<f32>(framebuffer.crop_rect.top);
right = static_cast<f32>(framebuffer.crop_rect.right);
bottom = static_cast<f32>(framebuffer.crop_rect.bottom);
} else {
// Otherwise, fall back to framebuffer dimensions.
left = 0;
top = 0;
right = static_cast<f32>(framebuffer.width);
bottom = static_cast<f32>(framebuffer.height);
}
// Apply transformation flags.
auto framebuffer_transform_flags = framebuffer.transform_flags;
if (True(framebuffer_transform_flags & Service::android::BufferTransformFlags::FlipH)) {
// Switch left and right.
std::swap(left, right);
}
if (True(framebuffer_transform_flags & Service::android::BufferTransformFlags::FlipV)) {
// Switch top and bottom.
std::swap(top, bottom);
}
framebuffer_transform_flags &= ~Service::android::BufferTransformFlags::FlipH;
framebuffer_transform_flags &= ~Service::android::BufferTransformFlags::FlipV;
if (True(framebuffer_transform_flags)) {
UNIMPLEMENTED_MSG("Unsupported framebuffer_transform_flags={}",
static_cast<u32>(framebuffer_transform_flags));
}
// Get the screen properties.
const f32 screen_width = static_cast<f32>(screen_info.width);
const f32 screen_height = static_cast<f32>(screen_info.height);
// Normalize coordinate space.
left /= screen_width;
top /= screen_height;
right /= screen_width;
bottom /= screen_height;
return Common::Rectangle<f32>(left, top, right, bottom);
}
void BlitScreen::Recreate() {
present_manager.WaitPresent();
scheduler.Finish();
@ -354,17 +404,10 @@ void BlitScreen::Draw(const Tegra::FramebufferConfig& framebuffer,
source_image_view = smaa->Draw(scheduler, image_index, source_image, source_image_view);
}
if (fsr) {
auto crop_rect = framebuffer.crop_rect;
if (crop_rect.GetWidth() == 0) {
crop_rect.right = framebuffer.width;
}
if (crop_rect.GetHeight() == 0) {
crop_rect.bottom = framebuffer.height;
}
crop_rect = crop_rect.Scale(Settings::values.resolution_info.up_factor);
VkExtent2D fsr_input_size{
.width = Settings::values.resolution_info.ScaleUp(framebuffer.width),
.height = Settings::values.resolution_info.ScaleUp(framebuffer.height),
const auto crop_rect = NormalizeCrop(framebuffer, screen_info);
const VkExtent2D fsr_input_size{
.width = Settings::values.resolution_info.ScaleUp(screen_info.width),
.height = Settings::values.resolution_info.ScaleUp(screen_info.height),
};
VkImageView fsr_image_view =
fsr->Draw(scheduler, image_index, source_image_view, fsr_input_size, crop_rect);
@ -1397,61 +1440,37 @@ void BlitScreen::SetUniformData(BufferData& data, const Layout::FramebufferLayou
void BlitScreen::SetVertexData(BufferData& data, const Tegra::FramebufferConfig& framebuffer,
const Layout::FramebufferLayout layout) const {
const auto& framebuffer_transform_flags = framebuffer.transform_flags;
const auto& framebuffer_crop_rect = framebuffer.crop_rect;
f32 left, top, right, bottom;
static constexpr Common::Rectangle<f32> texcoords{0.f, 0.f, 1.f, 1.f};
auto left = texcoords.left;
auto right = texcoords.right;
if (fsr) {
// FSR has already applied the crop, so we just want to render the image
// it has produced.
left = 0;
top = 0;
right = 1;
bottom = 1;
} else {
// Get the normalized crop rectangle.
const auto crop = NormalizeCrop(framebuffer, screen_info);
switch (framebuffer_transform_flags) {
case Service::android::BufferTransformFlags::Unset:
break;
case Service::android::BufferTransformFlags::FlipV:
// Flip the framebuffer vertically
left = texcoords.right;
right = texcoords.left;
break;
default:
UNIMPLEMENTED_MSG("Unsupported framebuffer_transform_flags={}",
static_cast<u32>(framebuffer_transform_flags));
break;
}
UNIMPLEMENTED_IF(framebuffer_crop_rect.left != 0);
f32 left_start{};
if (framebuffer_crop_rect.Top() > 0) {
left_start = static_cast<f32>(framebuffer_crop_rect.Top()) /
static_cast<f32>(framebuffer_crop_rect.Bottom());
}
f32 scale_u = static_cast<f32>(framebuffer.width) / static_cast<f32>(screen_info.width);
f32 scale_v = static_cast<f32>(framebuffer.height) / static_cast<f32>(screen_info.height);
// Scale the output by the crop width/height. This is commonly used with 1280x720 rendering
// (e.g. handheld mode) on a 1920x1080 framebuffer.
if (!fsr) {
if (framebuffer_crop_rect.GetWidth() > 0) {
scale_u = static_cast<f32>(framebuffer_crop_rect.GetWidth()) /
static_cast<f32>(screen_info.width);
}
if (framebuffer_crop_rect.GetHeight() > 0) {
scale_v = static_cast<f32>(framebuffer_crop_rect.GetHeight()) /
static_cast<f32>(screen_info.height);
}
// Apply the crop.
left = crop.left;
top = crop.top;
right = crop.right;
bottom = crop.bottom;
}
// Map the coordinates to the screen.
const auto& screen = layout.screen;
const auto x = static_cast<f32>(screen.left);
const auto y = static_cast<f32>(screen.top);
const auto w = static_cast<f32>(screen.GetWidth());
const auto h = static_cast<f32>(screen.GetHeight());
data.vertices[0] = ScreenRectVertex(x, y, texcoords.top * scale_u, left_start + left * scale_v);
data.vertices[1] =
ScreenRectVertex(x + w, y, texcoords.bottom * scale_u, left_start + left * scale_v);
data.vertices[2] =
ScreenRectVertex(x, y + h, texcoords.top * scale_u, left_start + right * scale_v);
data.vertices[3] =
ScreenRectVertex(x + w, y + h, texcoords.bottom * scale_u, left_start + right * scale_v);
data.vertices[0] = ScreenRectVertex(x, y, left, top);
data.vertices[1] = ScreenRectVertex(x + w, y, right, top);
data.vertices[2] = ScreenRectVertex(x, y + h, left, bottom);
data.vertices[3] = ScreenRectVertex(x + w, y + h, right, bottom);
}
void BlitScreen::CreateSMAA(VkExtent2D smaa_size) {

View file

@ -79,13 +79,13 @@ vk::Buffer CreateBuffer(const Device& device, const MemoryAllocator& memory_allo
} // Anonymous namespace
Buffer::Buffer(BufferCacheRuntime&, VideoCommon::NullBufferParams null_params)
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(null_params) {}
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(null_params), tracker{4096} {}
Buffer::Buffer(BufferCacheRuntime& runtime, VideoCore::RasterizerInterface& rasterizer_,
VAddr cpu_addr_, u64 size_bytes_)
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(rasterizer_, cpu_addr_, size_bytes_),
device{&runtime.device}, buffer{
CreateBuffer(*device, runtime.memory_allocator, SizeBytes())} {
device{&runtime.device}, buffer{CreateBuffer(*device, runtime.memory_allocator, SizeBytes())},
tracker{SizeBytes()} {
if (runtime.device.HasDebuggingToolAttached()) {
buffer.SetObjectNameEXT(fmt::format("Buffer 0x{:x}", CpuAddr()).c_str());
}
@ -359,12 +359,31 @@ u32 BufferCacheRuntime::GetStorageBufferAlignment() const {
return static_cast<u32>(device.GetStorageBufferAlignment());
}
void BufferCacheRuntime::TickFrame(VideoCommon::SlotVector<Buffer>& slot_buffers) noexcept {
for (auto it = slot_buffers.begin(); it != slot_buffers.end(); it++) {
it->ResetUsageTracking();
}
}
void BufferCacheRuntime::Finish() {
scheduler.Finish();
}
bool BufferCacheRuntime::CanReorderUpload(const Buffer& buffer,
std::span<const VideoCommon::BufferCopy> copies) {
if (Settings::values.disable_buffer_reorder) {
return false;
}
const bool can_use_upload_cmdbuf =
std::ranges::all_of(copies, [&](const VideoCommon::BufferCopy& copy) {
return !buffer.IsRegionUsed(copy.dst_offset, copy.size);
});
return can_use_upload_cmdbuf;
}
void BufferCacheRuntime::CopyBuffer(VkBuffer dst_buffer, VkBuffer src_buffer,
std::span<const VideoCommon::BufferCopy> copies, bool barrier) {
std::span<const VideoCommon::BufferCopy> copies, bool barrier,
bool can_reorder_upload) {
if (dst_buffer == VK_NULL_HANDLE || src_buffer == VK_NULL_HANDLE) {
return;
}
@ -380,9 +399,18 @@ void BufferCacheRuntime::CopyBuffer(VkBuffer dst_buffer, VkBuffer src_buffer,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
};
// Measuring a popular game, this number never exceeds the specified size once data is warmed up
boost::container::small_vector<VkBufferCopy, 8> vk_copies(copies.size());
std::ranges::transform(copies, vk_copies.begin(), MakeBufferCopy);
if (src_buffer == staging_pool.StreamBuf() && can_reorder_upload) {
scheduler.RecordWithUploadBuffer([src_buffer, dst_buffer, vk_copies](
vk::CommandBuffer, vk::CommandBuffer upload_cmdbuf) {
upload_cmdbuf.CopyBuffer(src_buffer, dst_buffer, vk_copies);
});
return;
}
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([src_buffer, dst_buffer, vk_copies, barrier](vk::CommandBuffer cmdbuf) {
if (barrier) {

View file

@ -5,6 +5,7 @@
#include "video_core/buffer_cache/buffer_cache_base.h"
#include "video_core/buffer_cache/memory_tracker_base.h"
#include "video_core/buffer_cache/usage_tracker.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/vk_compute_pass.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
@ -34,6 +35,18 @@ public:
return *buffer;
}
[[nodiscard]] bool IsRegionUsed(u64 offset, u64 size) const noexcept {
return tracker.IsUsed(offset, size);
}
void MarkUsage(u64 offset, u64 size) noexcept {
tracker.Track(offset, size);
}
void ResetUsageTracking() noexcept {
tracker.Reset();
}
operator VkBuffer() const noexcept {
return *buffer;
}
@ -49,6 +62,7 @@ private:
const Device* device{};
vk::Buffer buffer;
std::vector<BufferView> views;
VideoCommon::UsageTracker tracker;
};
class QuadArrayIndexBuffer;
@ -67,6 +81,8 @@ public:
ComputePassDescriptorQueue& compute_pass_descriptor_queue,
DescriptorPool& descriptor_pool);
void TickFrame(VideoCommon::SlotVector<Buffer>& slot_buffers) noexcept;
void Finish();
u64 GetDeviceLocalMemory() const;
@ -81,12 +97,15 @@ public:
[[nodiscard]] StagingBufferRef DownloadStagingBuffer(size_t size, bool deferred = false);
bool CanReorderUpload(const Buffer& buffer, std::span<const VideoCommon::BufferCopy> copies);
void FreeDeferredStagingBuffer(StagingBufferRef& ref);
void PreCopyBarrier();
void CopyBuffer(VkBuffer src_buffer, VkBuffer dst_buffer,
std::span<const VideoCommon::BufferCopy> copies, bool barrier = true);
std::span<const VideoCommon::BufferCopy> copies, bool barrier,
bool can_reorder_upload = false);
void PostCopyBarrier();

View file

@ -34,7 +34,7 @@ FSR::FSR(const Device& device_, MemoryAllocator& memory_allocator_, size_t image
}
VkImageView FSR::Draw(Scheduler& scheduler, size_t image_index, VkImageView image_view,
VkExtent2D input_image_extent, const Common::Rectangle<int>& crop_rect) {
VkExtent2D input_image_extent, const Common::Rectangle<f32>& crop_rect) {
UpdateDescriptorSet(image_index, image_view);
@ -61,15 +61,21 @@ VkImageView FSR::Draw(Scheduler& scheduler, size_t image_index, VkImageView imag
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *easu_pipeline);
std::array<u32, 4 * 4> push_constants;
FsrEasuConOffset(
push_constants.data() + 0, push_constants.data() + 4, push_constants.data() + 8,
push_constants.data() + 12,
const f32 input_image_width = static_cast<f32>(input_image_extent.width);
const f32 input_image_height = static_cast<f32>(input_image_extent.height);
const f32 output_image_width = static_cast<f32>(output_size.width);
const f32 output_image_height = static_cast<f32>(output_size.height);
const f32 viewport_width = (crop_rect.right - crop_rect.left) * input_image_width;
const f32 viewport_x = crop_rect.left * input_image_width;
const f32 viewport_height = (crop_rect.bottom - crop_rect.top) * input_image_height;
const f32 viewport_y = crop_rect.top * input_image_height;
static_cast<f32>(crop_rect.GetWidth()), static_cast<f32>(crop_rect.GetHeight()),
static_cast<f32>(input_image_extent.width), static_cast<f32>(input_image_extent.height),
static_cast<f32>(output_size.width), static_cast<f32>(output_size.height),
static_cast<f32>(crop_rect.left), static_cast<f32>(crop_rect.top));
std::array<u32, 4 * 4> push_constants;
FsrEasuConOffset(push_constants.data() + 0, push_constants.data() + 4,
push_constants.data() + 8, push_constants.data() + 12,
viewport_width, viewport_height, input_image_width, input_image_height,
output_image_width, output_image_height, viewport_x, viewport_y);
cmdbuf.PushConstants(*pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, push_constants);
{

View file

@ -17,7 +17,7 @@ public:
explicit FSR(const Device& device, MemoryAllocator& memory_allocator, size_t image_count,
VkExtent2D output_size);
VkImageView Draw(Scheduler& scheduler, size_t image_index, VkImageView image_view,
VkExtent2D input_image_extent, const Common::Rectangle<int>& crop_rect);
VkExtent2D input_image_extent, const Common::Rectangle<f32>& crop_rect);
private:
void CreateDescriptorPool();

View file

@ -100,12 +100,14 @@ void MasterSemaphore::Wait(u64 tick) {
Refresh();
}
VkResult MasterSemaphore::SubmitQueue(vk::CommandBuffer& cmdbuf, VkSemaphore signal_semaphore,
VkSemaphore wait_semaphore, u64 host_tick) {
VkResult MasterSemaphore::SubmitQueue(vk::CommandBuffer& cmdbuf, vk::CommandBuffer& upload_cmdbuf,
VkSemaphore signal_semaphore, VkSemaphore wait_semaphore,
u64 host_tick) {
if (semaphore) {
return SubmitQueueTimeline(cmdbuf, signal_semaphore, wait_semaphore, host_tick);
return SubmitQueueTimeline(cmdbuf, upload_cmdbuf, signal_semaphore, wait_semaphore,
host_tick);
} else {
return SubmitQueueFence(cmdbuf, signal_semaphore, wait_semaphore, host_tick);
return SubmitQueueFence(cmdbuf, upload_cmdbuf, signal_semaphore, wait_semaphore, host_tick);
}
}
@ -115,6 +117,7 @@ static constexpr std::array<VkPipelineStageFlags, 2> wait_stage_masks{
};
VkResult MasterSemaphore::SubmitQueueTimeline(vk::CommandBuffer& cmdbuf,
vk::CommandBuffer& upload_cmdbuf,
VkSemaphore signal_semaphore,
VkSemaphore wait_semaphore, u64 host_tick) {
const VkSemaphore timeline_semaphore = *semaphore;
@ -123,6 +126,8 @@ VkResult MasterSemaphore::SubmitQueueTimeline(vk::CommandBuffer& cmdbuf,
const std::array signal_values{host_tick, u64(0)};
const std::array signal_semaphores{timeline_semaphore, signal_semaphore};
const std::array cmdbuffers{*upload_cmdbuf, *cmdbuf};
const u32 num_wait_semaphores = wait_semaphore ? 1 : 0;
const VkTimelineSemaphoreSubmitInfo timeline_si{
.sType = VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO,
@ -138,8 +143,8 @@ VkResult MasterSemaphore::SubmitQueueTimeline(vk::CommandBuffer& cmdbuf,
.waitSemaphoreCount = num_wait_semaphores,
.pWaitSemaphores = &wait_semaphore,
.pWaitDstStageMask = wait_stage_masks.data(),
.commandBufferCount = 1,
.pCommandBuffers = cmdbuf.address(),
.commandBufferCount = static_cast<u32>(cmdbuffers.size()),
.pCommandBuffers = cmdbuffers.data(),
.signalSemaphoreCount = num_signal_semaphores,
.pSignalSemaphores = signal_semaphores.data(),
};
@ -147,19 +152,23 @@ VkResult MasterSemaphore::SubmitQueueTimeline(vk::CommandBuffer& cmdbuf,
return device.GetGraphicsQueue().Submit(submit_info);
}
VkResult MasterSemaphore::SubmitQueueFence(vk::CommandBuffer& cmdbuf, VkSemaphore signal_semaphore,
VkSemaphore wait_semaphore, u64 host_tick) {
VkResult MasterSemaphore::SubmitQueueFence(vk::CommandBuffer& cmdbuf,
vk::CommandBuffer& upload_cmdbuf,
VkSemaphore signal_semaphore, VkSemaphore wait_semaphore,
u64 host_tick) {
const u32 num_signal_semaphores = signal_semaphore ? 1 : 0;
const u32 num_wait_semaphores = wait_semaphore ? 1 : 0;
const std::array cmdbuffers{*upload_cmdbuf, *cmdbuf};
const VkSubmitInfo submit_info{
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pNext = nullptr,
.waitSemaphoreCount = num_wait_semaphores,
.pWaitSemaphores = &wait_semaphore,
.pWaitDstStageMask = wait_stage_masks.data(),
.commandBufferCount = 1,
.pCommandBuffers = cmdbuf.address(),
.commandBufferCount = static_cast<u32>(cmdbuffers.size()),
.pCommandBuffers = cmdbuffers.data(),
.signalSemaphoreCount = num_signal_semaphores,
.pSignalSemaphores = &signal_semaphore,
};

View file

@ -52,14 +52,16 @@ public:
void Wait(u64 tick);
/// Submits the device graphics queue, updating the tick as necessary
VkResult SubmitQueue(vk::CommandBuffer& cmdbuf, VkSemaphore signal_semaphore,
VkSemaphore wait_semaphore, u64 host_tick);
VkResult SubmitQueue(vk::CommandBuffer& cmdbuf, vk::CommandBuffer& upload_cmdbuf,
VkSemaphore signal_semaphore, VkSemaphore wait_semaphore, u64 host_tick);
private:
VkResult SubmitQueueTimeline(vk::CommandBuffer& cmdbuf, VkSemaphore signal_semaphore,
VkSemaphore wait_semaphore, u64 host_tick);
VkResult SubmitQueueFence(vk::CommandBuffer& cmdbuf, VkSemaphore signal_semaphore,
VkSemaphore wait_semaphore, u64 host_tick);
VkResult SubmitQueueTimeline(vk::CommandBuffer& cmdbuf, vk::CommandBuffer& upload_cmdbuf,
VkSemaphore signal_semaphore, VkSemaphore wait_semaphore,
u64 host_tick);
VkResult SubmitQueueFence(vk::CommandBuffer& cmdbuf, vk::CommandBuffer& upload_cmdbuf,
VkSemaphore signal_semaphore, VkSemaphore wait_semaphore,
u64 host_tick);
void WaitThread(std::stop_token token);

View file

@ -263,6 +263,22 @@ Shader::RuntimeInfo MakeRuntimeInfo(std::span<const Shader::IR::Program> program
info.y_negate = key.state.y_negate != 0;
return info;
}
size_t GetTotalPipelineWorkers() {
const size_t max_core_threads =
std::max<size_t>(static_cast<size_t>(std::thread::hardware_concurrency()), 2ULL) - 1ULL;
#ifdef ANDROID
// Leave at least a few cores free in android
constexpr size_t free_cores = 3ULL;
if (max_core_threads <= free_cores) {
return 1ULL;
}
return max_core_threads - free_cores;
#else
return max_core_threads;
#endif
}
} // Anonymous namespace
size_t ComputePipelineCacheKey::Hash() const noexcept {
@ -294,11 +310,8 @@ PipelineCache::PipelineCache(RasterizerVulkan& rasterizer_, const Device& device
texture_cache{texture_cache_}, shader_notify{shader_notify_},
use_asynchronous_shaders{Settings::values.use_asynchronous_shaders.GetValue()},
use_vulkan_pipeline_cache{Settings::values.use_vulkan_driver_pipeline_cache.GetValue()},
#ifdef ANDROID
workers(1, "VkPipelineBuilder"),
#else
workers(std::max(std::thread::hardware_concurrency(), 2U) - 1, "VkPipelineBuilder"),
#endif
workers(device.HasBrokenParallelShaderCompiling() ? 1ULL : GetTotalPipelineWorkers(),
"VkPipelineBuilder"),
serialization_thread(1, "VkPipelineSerialization") {
const auto& float_control{device.FloatControlProperties()};
const VkDriverId driver_id{device.GetDriverID()};
@ -338,6 +351,7 @@ PipelineCache::PipelineCache(RasterizerVulkan& rasterizer_, const Device& device
.support_geometry_shader_passthrough = device.IsNvGeometryShaderPassthroughSupported(),
.support_native_ndc = device.IsExtDepthClipControlSupported(),
.support_scaled_attributes = !device.MustEmulateScaledFormats(),
.support_multi_viewport = device.SupportsMultiViewport(),
.warp_size_potentially_larger_than_guest = device.IsWarpSizePotentiallyBiggerThanGuest(),

View file

@ -211,6 +211,13 @@ public:
return;
}
PauseCounter();
const auto driver_id = device.GetDriverID();
if (driver_id == VK_DRIVER_ID_QUALCOMM_PROPRIETARY ||
driver_id == VK_DRIVER_ID_ARM_PROPRIETARY || driver_id == VK_DRIVER_ID_MESA_TURNIP) {
pending_sync.clear();
sync_values_stash.clear();
return;
}
sync_values_stash.clear();
sync_values_stash.emplace_back();
std::vector<HostSyncValues>* sync_values = &sync_values_stash.back();
@ -1378,6 +1385,12 @@ bool QueryCacheRuntime::HostConditionalRenderingCompareValues(VideoCommon::Looku
return true;
}
auto driver_id = impl->device.GetDriverID();
if (driver_id == VK_DRIVER_ID_QUALCOMM_PROPRIETARY ||
driver_id == VK_DRIVER_ID_ARM_PROPRIETARY || driver_id == VK_DRIVER_ID_MESA_TURNIP) {
return true;
}
for (size_t i = 0; i < 2; i++) {
is_null[i] = !is_in_ac[i] && check_value(objects[i]->address);
}

View file

@ -82,7 +82,7 @@ VkViewport GetViewportState(const Device& device, const Maxwell& regs, size_t in
}
if (y_negate) {
y += height;
y += conv(static_cast<f32>(regs.surface_clip.height));
height = -height;
}
@ -199,7 +199,7 @@ void RasterizerVulkan::PrepareDraw(bool is_indexed, Func&& draw_func) {
if (!pipeline) {
return;
}
std::scoped_lock lock{LockCaches()};
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
// update engine as channel may be different.
pipeline->SetEngine(maxwell3d, gpu_memory);
pipeline->Configure(is_indexed);
@ -621,7 +621,7 @@ void RasterizerVulkan::OnCacheInvalidation(VAddr addr, u64 size) {
}
{
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.CachedWriteMemory(addr, size);
buffer_cache.WriteMemory(addr, size);
}
pipeline_cache.InvalidateRegion(addr, size);
}
@ -710,7 +710,6 @@ void RasterizerVulkan::TiledCacheBarrier() {
}
void RasterizerVulkan::FlushCommands() {
std::scoped_lock lock{LockCaches()};
if (draw_counter == 0) {
return;
}
@ -808,7 +807,6 @@ void RasterizerVulkan::FlushWork() {
if ((++draw_counter & 7) != 7) {
return;
}
std::scoped_lock lock{LockCaches()};
if (draw_counter < DRAWS_TO_DISPATCH) {
// Send recorded tasks to the worker thread
scheduler.DispatchWork();
@ -923,9 +921,13 @@ void RasterizerVulkan::UpdateDynamicStates() {
}
void RasterizerVulkan::HandleTransformFeedback() {
static std::once_flag warn_unsupported;
const auto& regs = maxwell3d->regs;
if (!device.IsExtTransformFeedbackSupported()) {
LOG_ERROR(Render_Vulkan, "Transform feedbacks used but not supported");
std::call_once(warn_unsupported, [&] {
LOG_ERROR(Render_Vulkan, "Transform feedbacks used but not supported");
});
return;
}
query_cache.CounterEnable(VideoCommon::QueryType::StreamingByteCount,
@ -1503,7 +1505,7 @@ void RasterizerVulkan::UpdateVertexInput(Tegra::Engines::Maxwell3D::Regs& regs)
void RasterizerVulkan::InitializeChannel(Tegra::Control::ChannelState& channel) {
CreateChannel(channel);
{
std::scoped_lock lock{LockCaches()};
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
texture_cache.CreateChannel(channel);
buffer_cache.CreateChannel(channel);
}
@ -1516,7 +1518,7 @@ void RasterizerVulkan::BindChannel(Tegra::Control::ChannelState& channel) {
const s32 channel_id = channel.bind_id;
BindToChannel(channel_id);
{
std::scoped_lock lock{LockCaches()};
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
texture_cache.BindToChannel(channel_id);
buffer_cache.BindToChannel(channel_id);
}
@ -1529,7 +1531,7 @@ void RasterizerVulkan::BindChannel(Tegra::Control::ChannelState& channel) {
void RasterizerVulkan::ReleaseChannel(s32 channel_id) {
EraseChannel(channel_id);
{
std::scoped_lock lock{LockCaches()};
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
texture_cache.EraseChannel(channel_id);
buffer_cache.EraseChannel(channel_id);
}

View file

@ -133,10 +133,6 @@ public:
void ReleaseChannel(s32 channel_id) override;
std::scoped_lock<std::recursive_mutex, std::recursive_mutex> LockCaches() {
return std::scoped_lock{buffer_cache.mutex, texture_cache.mutex};
}
private:
static constexpr size_t MAX_TEXTURES = 192;
static constexpr size_t MAX_IMAGES = 48;

View file

@ -22,11 +22,12 @@ namespace Vulkan {
MICROPROFILE_DECLARE(Vulkan_WaitForWorker);
void Scheduler::CommandChunk::ExecuteAll(vk::CommandBuffer cmdbuf) {
void Scheduler::CommandChunk::ExecuteAll(vk::CommandBuffer cmdbuf,
vk::CommandBuffer upload_cmdbuf) {
auto command = first;
while (command != nullptr) {
auto next = command->GetNext();
command->Execute(cmdbuf);
command->Execute(cmdbuf, upload_cmdbuf);
command->~Command();
command = next;
}
@ -180,7 +181,7 @@ void Scheduler::WorkerThread(std::stop_token stop_token) {
// Perform the work, tracking whether the chunk was a submission
// before executing.
const bool has_submit = work->HasSubmit();
work->ExecuteAll(current_cmdbuf);
work->ExecuteAll(current_cmdbuf, current_upload_cmdbuf);
// If the chunk was a submission, reallocate the command buffer.
if (has_submit) {
@ -205,6 +206,13 @@ void Scheduler::AllocateWorkerCommandBuffer() {
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
.pInheritanceInfo = nullptr,
});
current_upload_cmdbuf = vk::CommandBuffer(command_pool->Commit(), device.GetDispatchLoader());
current_upload_cmdbuf.Begin({
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = nullptr,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
.pInheritanceInfo = nullptr,
});
}
u64 Scheduler::SubmitExecution(VkSemaphore signal_semaphore, VkSemaphore wait_semaphore) {
@ -212,7 +220,17 @@ u64 Scheduler::SubmitExecution(VkSemaphore signal_semaphore, VkSemaphore wait_se
InvalidateState();
const u64 signal_value = master_semaphore->NextTick();
Record([signal_semaphore, wait_semaphore, signal_value, this](vk::CommandBuffer cmdbuf) {
RecordWithUploadBuffer([signal_semaphore, wait_semaphore, signal_value,
this](vk::CommandBuffer cmdbuf, vk::CommandBuffer upload_cmdbuf) {
static constexpr VkMemoryBarrier WRITE_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
};
upload_cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, WRITE_BARRIER);
upload_cmdbuf.End();
cmdbuf.End();
if (on_submit) {
@ -221,7 +239,7 @@ u64 Scheduler::SubmitExecution(VkSemaphore signal_semaphore, VkSemaphore wait_se
std::scoped_lock lock{submit_mutex};
switch (const VkResult result = master_semaphore->SubmitQueue(
cmdbuf, signal_semaphore, wait_semaphore, signal_value)) {
cmdbuf, upload_cmdbuf, signal_semaphore, wait_semaphore, signal_value)) {
case VK_SUCCESS:
break;
case VK_ERROR_DEVICE_LOST:

View file

@ -80,7 +80,8 @@ public:
/// Send work to a separate thread.
template <typename T>
void Record(T&& command) {
requires std::is_invocable_v<T, vk::CommandBuffer, vk::CommandBuffer>
void RecordWithUploadBuffer(T&& command) {
if (chunk->Record(command)) {
return;
}
@ -88,6 +89,15 @@ public:
(void)chunk->Record(command);
}
template <typename T>
requires std::is_invocable_v<T, vk::CommandBuffer>
void Record(T&& c) {
this->RecordWithUploadBuffer(
[command = std::move(c)](vk::CommandBuffer cmdbuf, vk::CommandBuffer) {
command(cmdbuf);
});
}
/// Returns the current command buffer tick.
[[nodiscard]] u64 CurrentTick() const noexcept {
return master_semaphore->CurrentTick();
@ -119,7 +129,7 @@ private:
public:
virtual ~Command() = default;
virtual void Execute(vk::CommandBuffer cmdbuf) const = 0;
virtual void Execute(vk::CommandBuffer cmdbuf, vk::CommandBuffer upload_cmdbuf) const = 0;
Command* GetNext() const {
return next;
@ -142,8 +152,8 @@ private:
TypedCommand(TypedCommand&&) = delete;
TypedCommand& operator=(TypedCommand&&) = delete;
void Execute(vk::CommandBuffer cmdbuf) const override {
command(cmdbuf);
void Execute(vk::CommandBuffer cmdbuf, vk::CommandBuffer upload_cmdbuf) const override {
command(cmdbuf, upload_cmdbuf);
}
private:
@ -152,7 +162,7 @@ private:
class CommandChunk final {
public:
void ExecuteAll(vk::CommandBuffer cmdbuf);
void ExecuteAll(vk::CommandBuffer cmdbuf, vk::CommandBuffer upload_cmdbuf);
template <typename T>
bool Record(T& command) {
@ -228,6 +238,7 @@ private:
VideoCommon::QueryCacheBase<QueryCacheParams>* query_cache = nullptr;
vk::CommandBuffer current_cmdbuf;
vk::CommandBuffer current_upload_cmdbuf;
std::unique_ptr<CommandChunk> chunk;
std::function<void()> on_submit;

View file

@ -672,7 +672,7 @@ void SMAA::UploadImages(Scheduler& scheduler) {
UploadImage(m_device, m_allocator, scheduler, m_static_images[Search], search_extent,
VK_FORMAT_R8_UNORM, ARRAY_TO_SPAN(searchTexBytes));
scheduler.Record([&](vk::CommandBuffer& cmdbuf) {
scheduler.Record([&](vk::CommandBuffer cmdbuf) {
for (auto& images : m_dynamic_images) {
for (size_t i = 0; i < MaxDynamicImage; i++) {
ClearColorImage(cmdbuf, *images.images[i]);
@ -707,7 +707,7 @@ VkImageView SMAA::Draw(Scheduler& scheduler, size_t image_index, VkImage source_
UpdateDescriptorSets(source_image_view, image_index);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([=, this](vk::CommandBuffer& cmdbuf) {
scheduler.Record([=, this](vk::CommandBuffer cmdbuf) {
TransitionImageLayout(cmdbuf, source_image, VK_IMAGE_LAYOUT_GENERAL);
TransitionImageLayout(cmdbuf, edges_image, VK_IMAGE_LAYOUT_GENERAL);
BeginRenderPass(cmdbuf, m_renderpasses[EdgeDetection], edge_detection_framebuffer,

View file

@ -36,6 +36,10 @@ public:
StagingBufferRef Request(size_t size, MemoryUsage usage, bool deferred = false);
void FreeDeferred(StagingBufferRef& ref);
[[nodiscard]] VkBuffer StreamBuf() const noexcept {
return *stream_buffer;
}
void TickFrame();
private:

View file

@ -1785,8 +1785,22 @@ ImageView::ImageView(TextureCacheRuntime&, const VideoCommon::ImageInfo& info,
: VideoCommon::ImageViewBase{info, view_info, gpu_addr_},
buffer_size{VideoCommon::CalculateGuestSizeInBytes(info)} {}
ImageView::ImageView(TextureCacheRuntime&, const VideoCommon::NullImageViewParams& params)
: VideoCommon::ImageViewBase{params} {}
ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::NullImageViewParams& params)
: VideoCommon::ImageViewBase{params}, device{&runtime.device} {
if (device->HasNullDescriptor()) {
return;
}
// Handle fallback for devices without nullDescriptor
ImageInfo info{};
info.format = PixelFormat::A8B8G8R8_UNORM;
null_image = MakeImage(*device, runtime.memory_allocator, info, {});
image_handle = *null_image;
for (u32 i = 0; i < Shader::NUM_TEXTURE_TYPES; i++) {
image_views[i] = MakeView(VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_IMAGE_ASPECT_COLOR_BIT);
}
}
ImageView::~ImageView() = default;

View file

@ -267,6 +267,7 @@ private:
vk::ImageView depth_view;
vk::ImageView stencil_view;
vk::ImageView color_view;
vk::Image null_image;
VkImage image_handle = VK_NULL_HANDLE;
VkImageView render_target = VK_NULL_HANDLE;
VkSampleCountFlagBits samples = VK_SAMPLE_COUNT_1_BIT;

View file

@ -138,6 +138,10 @@ public:
return Iterator(this, SlotId{SlotId::INVALID_INDEX});
}
[[nodiscard]] size_t size() const noexcept {
return values_capacity - free_list.size();
}
private:
struct NonTrivialDummy {
NonTrivialDummy() noexcept {}

View file

@ -635,6 +635,12 @@ Device::Device(VkInstance instance_, vk::PhysicalDevice physical_, VkSurfaceKHR
has_broken_cube_compatibility = true;
}
}
if (is_qualcomm) {
const u32 version = (properties.properties.driverVersion << 3) >> 3;
if (version < VK_MAKE_API_VERSION(0, 255, 615, 512)) {
has_broken_parallel_compiling = true;
}
}
if (extensions.sampler_filter_minmax && is_amd) {
// Disable ext_sampler_filter_minmax on AMD GCN4 and lower as it is broken.
if (!features.shader_float16_int8.shaderFloat16) {
@ -863,7 +869,8 @@ bool Device::ShouldBoostClocks() const {
driver_id == VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA ||
driver_id == VK_DRIVER_ID_QUALCOMM_PROPRIETARY || driver_id == VK_DRIVER_ID_MESA_TURNIP;
const bool is_steam_deck = vendor_id == 0x1002 && device_id == 0x163F;
const bool is_steam_deck = (vendor_id == 0x1002 && device_id == 0x163F) ||
(vendor_id == 0x1002 && device_id == 0x1435);
const bool is_debugging = this->HasDebuggingToolAttached();

View file

@ -102,6 +102,7 @@ VK_DEFINE_HANDLE(VmaAllocator)
EXTENSION_NAME(VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME) \
EXTENSION_NAME(VK_EXT_EXTENDED_DYNAMIC_STATE_2_EXTENSION_NAME) \
EXTENSION_NAME(VK_EXT_EXTENDED_DYNAMIC_STATE_3_EXTENSION_NAME) \
EXTENSION_NAME(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME) \
EXTENSION_NAME(VK_EXT_4444_FORMATS_EXTENSION_NAME) \
EXTENSION_NAME(VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME) \
EXTENSION_NAME(VK_EXT_ROBUSTNESS_2_EXTENSION_NAME) \
@ -599,6 +600,11 @@ public:
return has_broken_cube_compatibility;
}
/// Returns true if parallel shader compiling has issues with the current driver.
bool HasBrokenParallelShaderCompiling() const {
return has_broken_parallel_compiling;
}
/// Returns the vendor name reported from Vulkan.
std::string_view GetVendorName() const {
return properties.driver.driverName;
@ -663,6 +669,10 @@ public:
return supports_conditional_barriers;
}
bool SupportsMultiViewport() const {
return features2.features.multiViewport;
}
[[nodiscard]] static constexpr bool CheckBrokenCompute(VkDriverId driver_id,
u32 driver_version) {
if (driver_id == VK_DRIVER_ID_INTEL_PROPRIETARY_WINDOWS) {
@ -794,6 +804,7 @@ private:
bool is_non_gpu{}; ///< Is SoftwareRasterizer, FPGA, non-GPU device.
bool has_broken_compute{}; ///< Compute shaders can cause crashes
bool has_broken_cube_compatibility{}; ///< Has broken cube compatibility bit
bool has_broken_parallel_compiling{}; ///< Has broken parallel shader compiling.
bool has_renderdoc{}; ///< Has RenderDoc attached
bool has_nsight_graphics{}; ///< Has Nsight Graphics attached
bool supports_d24_depth{}; ///< Supports D24 depth buffers.

View file

@ -1101,6 +1101,10 @@ public:
return &handle;
}
VkCommandBuffer operator*() const noexcept {
return handle;
}
void Begin(const VkCommandBufferBeginInfo& begin_info) const {
Check(dld->vkBeginCommandBuffer(handle, &begin_info));
}