CoreTiming: Reworked CoreTiming (cherry-picked from Citra #3119)
* CoreTiming: New CoreTiming; Add Test for CoreTiming
This commit is contained in:
parent
c12c756539
commit
82151d407d
12 changed files with 665 additions and 584 deletions
|
@ -1,562 +1,238 @@
|
|||
// Copyright (c) 2012- PPSSPP Project / Dolphin Project.
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
||||
// Licensed under GPLv2+
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include <atomic>
|
||||
#include <cinttypes>
|
||||
#include <mutex>
|
||||
#include <vector>
|
||||
#include "common/chunk_file.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/string_util.h"
|
||||
#include "core/arm/arm_interface.h"
|
||||
#include "core/core.h"
|
||||
#include "core/core_timing.h"
|
||||
|
||||
int g_clock_rate_arm11 = BASE_CLOCK_RATE;
|
||||
|
||||
// is this really necessary?
|
||||
#define INITIAL_SLICE_LENGTH 20000
|
||||
#define MAX_SLICE_LENGTH 100000000
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "common/assert.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "common/thread.h"
|
||||
#include "common/threadsafe_queue.h"
|
||||
|
||||
namespace CoreTiming {
|
||||
struct EventType {
|
||||
EventType() {}
|
||||
|
||||
EventType(TimedCallback cb, const char* n) : callback(cb), name(n) {}
|
||||
|
||||
TimedCallback callback;
|
||||
const char* name;
|
||||
};
|
||||
|
||||
static std::vector<EventType> event_types;
|
||||
|
||||
struct BaseEvent {
|
||||
s64 time;
|
||||
u64 userdata;
|
||||
int type;
|
||||
};
|
||||
|
||||
typedef LinkedListItem<BaseEvent> Event;
|
||||
|
||||
static Event* first;
|
||||
static Event* ts_first;
|
||||
static Event* ts_last;
|
||||
|
||||
// event pools
|
||||
static Event* event_pool = nullptr;
|
||||
static Event* event_ts_pool = nullptr;
|
||||
static int allocated_ts_events = 0;
|
||||
// Optimization to skip MoveEvents when possible.
|
||||
static std::atomic<bool> has_ts_events(false);
|
||||
|
||||
int g_slice_length;
|
||||
|
||||
static s64 global_timer;
|
||||
static int slice_length;
|
||||
static int downcount;
|
||||
|
||||
struct EventType {
|
||||
TimedCallback callback;
|
||||
const std::string* name;
|
||||
};
|
||||
|
||||
struct Event {
|
||||
s64 time;
|
||||
u64 fifo_order;
|
||||
u64 userdata;
|
||||
const EventType* type;
|
||||
};
|
||||
|
||||
// Sort by time, unless the times are the same, in which case sort by the order added to the queue
|
||||
static bool operator>(const Event& left, const Event& right) {
|
||||
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
|
||||
}
|
||||
|
||||
static bool operator<(const Event& left, const Event& right) {
|
||||
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
|
||||
}
|
||||
|
||||
// unordered_map stores each element separately as a linked list node so pointers to elements
|
||||
// remain stable regardless of rehashes/resizing.
|
||||
static std::unordered_map<std::string, EventType> event_types;
|
||||
|
||||
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
|
||||
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
|
||||
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
|
||||
// by the standard adaptor class.
|
||||
static std::vector<Event> event_queue;
|
||||
static u64 event_fifo_id;
|
||||
// the queue for storing the events from other threads threadsafe until they will be added
|
||||
// to the event_queue by the emu thread
|
||||
static Common::MPSCQueue<Event, false> ts_queue;
|
||||
|
||||
static constexpr int MAX_SLICE_LENGTH = 20000;
|
||||
|
||||
static s64 idled_cycles;
|
||||
static s64 last_global_time_ticks;
|
||||
static s64 last_global_time_us;
|
||||
|
||||
static s64 down_count = 0; ///< A decreasing counter of remaining cycles before the next event,
|
||||
/// decreased by the cpu run loop
|
||||
// Are we in a function that has been called from Advance()
|
||||
// If events are sheduled from a function that gets called from Advance(),
|
||||
// don't change slice_length and downcount.
|
||||
static bool is_global_timer_sane;
|
||||
|
||||
static std::recursive_mutex external_event_section;
|
||||
static EventType* ev_lost = nullptr;
|
||||
|
||||
// Warning: not included in save state.
|
||||
using AdvanceCallback = void(int cycles_executed);
|
||||
static AdvanceCallback* advance_callback = nullptr;
|
||||
static std::vector<MHzChangeCallback> mhz_change_callbacks;
|
||||
static void EmptyTimedCallback(u64 userdata, s64 cyclesLate) {}
|
||||
|
||||
static void FireMhzChange() {
|
||||
for (auto callback : mhz_change_callbacks)
|
||||
callback();
|
||||
}
|
||||
EventType* RegisterEvent(const std::string& name, TimedCallback callback) {
|
||||
// check for existing type with same name.
|
||||
// we want event type names to remain unique so that we can use them for serialization.
|
||||
ASSERT_MSG(event_types.find(name) == event_types.end(),
|
||||
"CoreTiming Event \"%s\" is already registered. Events should only be registered "
|
||||
"during Init to avoid breaking save states.",
|
||||
name.c_str());
|
||||
|
||||
void SetClockFrequencyMHz(int cpu_mhz) {
|
||||
// When the mhz changes, we keep track of what "time" it was before hand.
|
||||
// This way, time always moves forward, even if mhz is changed.
|
||||
last_global_time_us = GetGlobalTimeUs();
|
||||
last_global_time_ticks = GetTicks();
|
||||
|
||||
g_clock_rate_arm11 = cpu_mhz * 1000000;
|
||||
// TODO: Rescale times of scheduled events?
|
||||
|
||||
FireMhzChange();
|
||||
}
|
||||
|
||||
int GetClockFrequencyMHz() {
|
||||
return g_clock_rate_arm11 / 1000000;
|
||||
}
|
||||
|
||||
u64 GetGlobalTimeUs() {
|
||||
s64 ticks_since_last = GetTicks() - last_global_time_ticks;
|
||||
int freq = GetClockFrequencyMHz();
|
||||
s64 us_since_last = ticks_since_last / freq;
|
||||
return last_global_time_us + us_since_last;
|
||||
}
|
||||
|
||||
static Event* GetNewEvent() {
|
||||
if (!event_pool)
|
||||
return new Event;
|
||||
|
||||
Event* event = event_pool;
|
||||
event_pool = event->next;
|
||||
return event;
|
||||
}
|
||||
|
||||
static Event* GetNewTsEvent() {
|
||||
allocated_ts_events++;
|
||||
|
||||
if (!event_ts_pool)
|
||||
return new Event;
|
||||
|
||||
Event* event = event_ts_pool;
|
||||
event_ts_pool = event->next;
|
||||
return event;
|
||||
}
|
||||
|
||||
static void FreeEvent(Event* event) {
|
||||
event->next = event_pool;
|
||||
event_pool = event;
|
||||
}
|
||||
|
||||
static void FreeTsEvent(Event* event) {
|
||||
event->next = event_ts_pool;
|
||||
event_ts_pool = event;
|
||||
allocated_ts_events--;
|
||||
}
|
||||
|
||||
int RegisterEvent(const char* name, TimedCallback callback) {
|
||||
event_types.emplace_back(callback, name);
|
||||
return (int)event_types.size() - 1;
|
||||
}
|
||||
|
||||
static void AntiCrashCallback(u64 userdata, int cycles_late) {
|
||||
LOG_CRITICAL(Core_Timing, "Savestate broken: an unregistered event was called.");
|
||||
}
|
||||
|
||||
void RestoreRegisterEvent(int event_type, const char* name, TimedCallback callback) {
|
||||
if (event_type >= (int)event_types.size())
|
||||
event_types.resize(event_type + 1, EventType(AntiCrashCallback, "INVALID EVENT"));
|
||||
|
||||
event_types[event_type] = EventType(callback, name);
|
||||
auto info = event_types.emplace(name, EventType{callback, nullptr});
|
||||
EventType* event_type = &info.first->second;
|
||||
event_type->name = &info.first->first;
|
||||
return event_type;
|
||||
}
|
||||
|
||||
void UnregisterAllEvents() {
|
||||
if (first)
|
||||
LOG_ERROR(Core_Timing, "Cannot unregister events with events pending");
|
||||
ASSERT_MSG(event_queue.empty(), "Cannot unregister events with events pending");
|
||||
event_types.clear();
|
||||
}
|
||||
|
||||
void Init() {
|
||||
down_count = INITIAL_SLICE_LENGTH;
|
||||
g_slice_length = INITIAL_SLICE_LENGTH;
|
||||
downcount = MAX_SLICE_LENGTH;
|
||||
slice_length = MAX_SLICE_LENGTH;
|
||||
global_timer = 0;
|
||||
idled_cycles = 0;
|
||||
last_global_time_ticks = 0;
|
||||
last_global_time_us = 0;
|
||||
has_ts_events = 0;
|
||||
mhz_change_callbacks.clear();
|
||||
|
||||
first = nullptr;
|
||||
ts_first = nullptr;
|
||||
ts_last = nullptr;
|
||||
// The time between CoreTiming being intialized and the first call to Advance() is considered
|
||||
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
|
||||
// executing the first cycle of each slice to prepare the slice length and downcount for
|
||||
// that slice.
|
||||
is_global_timer_sane = true;
|
||||
|
||||
event_pool = nullptr;
|
||||
event_ts_pool = nullptr;
|
||||
allocated_ts_events = 0;
|
||||
|
||||
advance_callback = nullptr;
|
||||
event_fifo_id = 0;
|
||||
ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback);
|
||||
}
|
||||
|
||||
void Shutdown() {
|
||||
MoveEvents();
|
||||
ClearPendingEvents();
|
||||
UnregisterAllEvents();
|
||||
}
|
||||
|
||||
while (event_pool) {
|
||||
Event* event = event_pool;
|
||||
event_pool = event->next;
|
||||
delete event;
|
||||
}
|
||||
|
||||
std::lock_guard<std::recursive_mutex> lock(external_event_section);
|
||||
while (event_ts_pool) {
|
||||
Event* event = event_ts_pool;
|
||||
event_ts_pool = event->next;
|
||||
delete event;
|
||||
// This should only be called from the CPU thread. If you are calling
|
||||
// it from any other thread, you are doing something evil
|
||||
u64 GetTicks() {
|
||||
u64 ticks = static_cast<u64>(global_timer);
|
||||
if (!is_global_timer_sane) {
|
||||
ticks += slice_length - downcount;
|
||||
}
|
||||
return ticks;
|
||||
}
|
||||
|
||||
void AddTicks(u64 ticks) {
|
||||
down_count -= ticks;
|
||||
if (down_count < 0) {
|
||||
Advance();
|
||||
}
|
||||
}
|
||||
|
||||
u64 GetTicks() {
|
||||
return (u64)global_timer + g_slice_length - down_count;
|
||||
downcount -= ticks;
|
||||
}
|
||||
|
||||
u64 GetIdleTicks() {
|
||||
return (u64)idled_cycles;
|
||||
}
|
||||
|
||||
// This is to be called when outside threads, such as the graphics thread, wants to
|
||||
// schedule things to be executed on the main thread.
|
||||
void ScheduleEvent_Threadsafe(s64 cycles_into_future, int event_type, u64 userdata) {
|
||||
std::lock_guard<std::recursive_mutex> lock(external_event_section);
|
||||
Event* new_event = GetNewTsEvent();
|
||||
new_event->time = GetTicks() + cycles_into_future;
|
||||
new_event->type = event_type;
|
||||
new_event->next = nullptr;
|
||||
new_event->userdata = userdata;
|
||||
if (!ts_first)
|
||||
ts_first = new_event;
|
||||
if (ts_last)
|
||||
ts_last->next = new_event;
|
||||
ts_last = new_event;
|
||||
|
||||
has_ts_events = true;
|
||||
}
|
||||
|
||||
// Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread
|
||||
// in which case the event will get handled immediately, before returning.
|
||||
void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata) {
|
||||
if (false) // Core::IsCPUThread())
|
||||
{
|
||||
std::lock_guard<std::recursive_mutex> lock(external_event_section);
|
||||
event_types[event_type].callback(userdata, 0);
|
||||
} else
|
||||
ScheduleEvent_Threadsafe(0, event_type, userdata);
|
||||
return static_cast<u64>(idled_cycles);
|
||||
}
|
||||
|
||||
void ClearPendingEvents() {
|
||||
while (first) {
|
||||
Event* event = first->next;
|
||||
FreeEvent(first);
|
||||
first = event;
|
||||
event_queue.clear();
|
||||
}
|
||||
|
||||
void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata) {
|
||||
ASSERT(event_type != nullptr);
|
||||
s64 timeout = GetTicks() + cycles_into_future;
|
||||
|
||||
// If this event needs to be scheduled before the next advance(), force one early
|
||||
if (!is_global_timer_sane)
|
||||
ForceExceptionCheck(cycles_into_future);
|
||||
|
||||
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
|
||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<Event>());
|
||||
}
|
||||
|
||||
void ScheduleEventThreadsafe(s64 cycles_into_future, const EventType* event_type, u64 userdata) {
|
||||
ts_queue.Push(Event{global_timer + cycles_into_future, 0, userdata, event_type});
|
||||
}
|
||||
|
||||
void UnscheduleEvent(const EventType* event_type, u64 userdata) {
|
||||
auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||||
return e.type == event_type && e.userdata == userdata;
|
||||
});
|
||||
|
||||
// Removing random items breaks the invariant so we have to re-establish it.
|
||||
if (itr != event_queue.end()) {
|
||||
event_queue.erase(itr, event_queue.end());
|
||||
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<Event>());
|
||||
}
|
||||
}
|
||||
|
||||
static void AddEventToQueue(Event* new_event) {
|
||||
Event* prev_event = nullptr;
|
||||
Event** next_event = &first;
|
||||
for (;;) {
|
||||
Event*& next = *next_event;
|
||||
if (!next || new_event->time < next->time) {
|
||||
new_event->next = next;
|
||||
next = new_event;
|
||||
break;
|
||||
}
|
||||
prev_event = next;
|
||||
next_event = &prev_event->next;
|
||||
void RemoveEvent(const EventType* event_type) {
|
||||
auto itr = std::remove_if(event_queue.begin(), event_queue.end(),
|
||||
[&](const Event& e) { return e.type == event_type; });
|
||||
|
||||
// Removing random items breaks the invariant so we have to re-establish it.
|
||||
if (itr != event_queue.end()) {
|
||||
event_queue.erase(itr, event_queue.end());
|
||||
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<Event>());
|
||||
}
|
||||
}
|
||||
|
||||
void ScheduleEvent(s64 cycles_into_future, int event_type, u64 userdata) {
|
||||
Event* new_event = GetNewEvent();
|
||||
new_event->userdata = userdata;
|
||||
new_event->type = event_type;
|
||||
new_event->time = GetTicks() + cycles_into_future;
|
||||
AddEventToQueue(new_event);
|
||||
}
|
||||
|
||||
s64 UnscheduleEvent(int event_type, u64 userdata) {
|
||||
s64 result = 0;
|
||||
if (!first)
|
||||
return result;
|
||||
while (first) {
|
||||
if (first->type == event_type && first->userdata == userdata) {
|
||||
result = first->time - GetTicks();
|
||||
|
||||
Event* next = first->next;
|
||||
FreeEvent(first);
|
||||
first = next;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!first)
|
||||
return result;
|
||||
|
||||
Event* prev_event = first;
|
||||
Event* ptr = prev_event->next;
|
||||
|
||||
while (ptr) {
|
||||
if (ptr->type == event_type && ptr->userdata == userdata) {
|
||||
result = ptr->time - GetTicks();
|
||||
|
||||
prev_event->next = ptr->next;
|
||||
FreeEvent(ptr);
|
||||
ptr = prev_event->next;
|
||||
} else {
|
||||
prev_event = ptr;
|
||||
ptr = ptr->next;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata) {
|
||||
s64 result = 0;
|
||||
std::lock_guard<std::recursive_mutex> lock(external_event_section);
|
||||
if (!ts_first)
|
||||
return result;
|
||||
|
||||
while (ts_first) {
|
||||
if (ts_first->type == event_type && ts_first->userdata == userdata) {
|
||||
result = ts_first->time - GetTicks();
|
||||
|
||||
Event* next = ts_first->next;
|
||||
FreeTsEvent(ts_first);
|
||||
ts_first = next;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ts_first) {
|
||||
ts_last = nullptr;
|
||||
return result;
|
||||
}
|
||||
|
||||
Event* prev_event = ts_first;
|
||||
Event* next = prev_event->next;
|
||||
while (next) {
|
||||
if (next->type == event_type && next->userdata == userdata) {
|
||||
result = next->time - GetTicks();
|
||||
|
||||
prev_event->next = next->next;
|
||||
if (next == ts_last)
|
||||
ts_last = prev_event;
|
||||
FreeTsEvent(next);
|
||||
next = prev_event->next;
|
||||
} else {
|
||||
prev_event = next;
|
||||
next = next->next;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Warning: not included in save state.
|
||||
void RegisterAdvanceCallback(AdvanceCallback* callback) {
|
||||
advance_callback = callback;
|
||||
}
|
||||
|
||||
void RegisterMHzChangeCallback(MHzChangeCallback callback) {
|
||||
mhz_change_callbacks.push_back(callback);
|
||||
}
|
||||
|
||||
bool IsScheduled(int event_type) {
|
||||
if (!first)
|
||||
return false;
|
||||
Event* event = first;
|
||||
while (event) {
|
||||
if (event->type == event_type)
|
||||
return true;
|
||||
event = event->next;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void RemoveEvent(int event_type) {
|
||||
if (!first)
|
||||
return;
|
||||
while (first) {
|
||||
if (first->type == event_type) {
|
||||
Event* next = first->next;
|
||||
FreeEvent(first);
|
||||
first = next;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!first)
|
||||
return;
|
||||
Event* prev = first;
|
||||
Event* next = prev->next;
|
||||
while (next) {
|
||||
if (next->type == event_type) {
|
||||
prev->next = next->next;
|
||||
FreeEvent(next);
|
||||
next = prev->next;
|
||||
} else {
|
||||
prev = next;
|
||||
next = next->next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RemoveThreadsafeEvent(int event_type) {
|
||||
std::lock_guard<std::recursive_mutex> lock(external_event_section);
|
||||
if (!ts_first)
|
||||
return;
|
||||
|
||||
while (ts_first) {
|
||||
if (ts_first->type == event_type) {
|
||||
Event* next = ts_first->next;
|
||||
FreeTsEvent(ts_first);
|
||||
ts_first = next;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ts_first) {
|
||||
ts_last = nullptr;
|
||||
return;
|
||||
}
|
||||
|
||||
Event* prev = ts_first;
|
||||
Event* next = prev->next;
|
||||
while (next) {
|
||||
if (next->type == event_type) {
|
||||
prev->next = next->next;
|
||||
if (next == ts_last)
|
||||
ts_last = prev;
|
||||
FreeTsEvent(next);
|
||||
next = prev->next;
|
||||
} else {
|
||||
prev = next;
|
||||
next = next->next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RemoveAllEvents(int event_type) {
|
||||
RemoveThreadsafeEvent(event_type);
|
||||
void RemoveNormalAndThreadsafeEvent(const EventType* event_type) {
|
||||
MoveEvents();
|
||||
RemoveEvent(event_type);
|
||||
}
|
||||
|
||||
// This raise only the events required while the fifo is processing data
|
||||
void ProcessFifoWaitEvents() {
|
||||
while (first) {
|
||||
if (first->time <= (s64)GetTicks()) {
|
||||
Event* evt = first;
|
||||
first = first->next;
|
||||
event_types[evt->type].callback(evt->userdata, (int)(GetTicks() - evt->time));
|
||||
FreeEvent(evt);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
void ForceExceptionCheck(s64 cycles) {
|
||||
cycles = std::max<s64>(0, cycles);
|
||||
if (downcount > cycles) {
|
||||
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
|
||||
// here. Account for cycles already executed by adjusting the g.slice_length
|
||||
slice_length -= downcount - static_cast<int>(cycles);
|
||||
downcount = static_cast<int>(cycles);
|
||||
}
|
||||
}
|
||||
|
||||
void MoveEvents() {
|
||||
has_ts_events = false;
|
||||
|
||||
std::lock_guard<std::recursive_mutex> lock(external_event_section);
|
||||
// Move events from async queue into main queue
|
||||
while (ts_first) {
|
||||
Event* next = ts_first->next;
|
||||
AddEventToQueue(ts_first);
|
||||
ts_first = next;
|
||||
for (Event ev; ts_queue.Pop(ev);) {
|
||||
ev.fifo_order = event_fifo_id++;
|
||||
event_queue.emplace_back(std::move(ev));
|
||||
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<Event>());
|
||||
}
|
||||
ts_last = nullptr;
|
||||
|
||||
// Move free events to threadsafe pool
|
||||
while (allocated_ts_events > 0 && event_pool) {
|
||||
Event* event = event_pool;
|
||||
event_pool = event->next;
|
||||
event->next = event_ts_pool;
|
||||
event_ts_pool = event;
|
||||
allocated_ts_events--;
|
||||
}
|
||||
}
|
||||
|
||||
void ForceCheck() {
|
||||
s64 cycles_executed = g_slice_length - down_count;
|
||||
global_timer += cycles_executed;
|
||||
// This will cause us to check for new events immediately.
|
||||
down_count = 0;
|
||||
// But let's not eat a bunch more time in Advance() because of this.
|
||||
g_slice_length = 0;
|
||||
}
|
||||
|
||||
void Advance() {
|
||||
s64 cycles_executed = g_slice_length - down_count;
|
||||
MoveEvents();
|
||||
|
||||
int cycles_executed = slice_length - downcount;
|
||||
global_timer += cycles_executed;
|
||||
down_count = g_slice_length;
|
||||
slice_length = MAX_SLICE_LENGTH;
|
||||
|
||||
if (has_ts_events)
|
||||
MoveEvents();
|
||||
ProcessFifoWaitEvents();
|
||||
is_global_timer_sane = true;
|
||||
|
||||
if (!first) {
|
||||
if (g_slice_length < 10000) {
|
||||
g_slice_length += 10000;
|
||||
down_count += g_slice_length;
|
||||
}
|
||||
} else {
|
||||
// Note that events can eat cycles as well.
|
||||
int target = (int)(first->time - global_timer);
|
||||
if (target > MAX_SLICE_LENGTH)
|
||||
target = MAX_SLICE_LENGTH;
|
||||
|
||||
const int diff = target - g_slice_length;
|
||||
g_slice_length += diff;
|
||||
down_count += diff;
|
||||
}
|
||||
if (advance_callback)
|
||||
advance_callback(static_cast<int>(cycles_executed));
|
||||
}
|
||||
|
||||
void LogPendingEvents() {
|
||||
Event* event = first;
|
||||
while (event) {
|
||||
// LOG_TRACE(Core_Timing, "PENDING: Now: %lld Pending: %lld Type: %d", globalTimer,
|
||||
// next->time, next->type);
|
||||
event = event->next;
|
||||
}
|
||||
}
|
||||
|
||||
void Idle(int max_idle) {
|
||||
s64 cycles_down = down_count;
|
||||
if (max_idle != 0 && cycles_down > max_idle)
|
||||
cycles_down = max_idle;
|
||||
|
||||
if (first && cycles_down > 0) {
|
||||
s64 cycles_executed = g_slice_length - down_count;
|
||||
s64 cycles_next_event = first->time - global_timer;
|
||||
|
||||
if (cycles_next_event < cycles_executed + cycles_down) {
|
||||
cycles_down = cycles_next_event - cycles_executed;
|
||||
// Now, now... no time machines, please.
|
||||
if (cycles_down < 0)
|
||||
cycles_down = 0;
|
||||
}
|
||||
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
||||
Event evt = std::move(event_queue.front());
|
||||
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<Event>());
|
||||
event_queue.pop_back();
|
||||
evt.type->callback(evt.userdata, global_timer - evt.time);
|
||||
}
|
||||
|
||||
LOG_TRACE(Core_Timing, "Idle for %" PRId64 " cycles! (%f ms)", cycles_down,
|
||||
cycles_down / (float)(g_clock_rate_arm11 * 0.001f));
|
||||
is_global_timer_sane = false;
|
||||
|
||||
idled_cycles += cycles_down;
|
||||
down_count -= cycles_down;
|
||||
if (down_count == 0)
|
||||
down_count = -1;
|
||||
}
|
||||
|
||||
std::string GetScheduledEventsSummary() {
|
||||
Event* event = first;
|
||||
std::string text = "Scheduled events\n";
|
||||
text.reserve(1000);
|
||||
while (event) {
|
||||
unsigned int t = event->type;
|
||||
if (t >= event_types.size())
|
||||
LOG_ERROR(Core_Timing, "Invalid event type"); // %i", t);
|
||||
const char* name = event_types[event->type].name;
|
||||
if (!name)
|
||||
name = "[unknown]";
|
||||
text += Common::StringFromFormat("%s : %i %08x%08x\n", name, (int)event->time,
|
||||
(u32)(event->userdata >> 32), (u32)(event->userdata));
|
||||
event = event->next;
|
||||
// Still events left (scheduled in the future)
|
||||
if (!event_queue.empty()) {
|
||||
slice_length = static_cast<int>(
|
||||
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH));
|
||||
}
|
||||
return text;
|
||||
|
||||
downcount = slice_length;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
void Idle() {
|
||||
idled_cycles += downcount;
|
||||
downcount = 0;
|
||||
}
|
||||
|
||||
u64 GetGlobalTimeUs() {
|
||||
return GetTicks() * 1000000 / BASE_CLOCK_RATE;
|
||||
}
|
||||
|
||||
int GetDowncount() {
|
||||
return downcount;
|
||||
}
|
||||
|
||||
} // namespace CoreTiming
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue