video_core: Reimplement the buffer cache

Reimplement the buffer cache using cached bindings and page level
granularity for modification tracking. This also drops the usage of
shared pointers and virtual functions from the cache.

- Bindings are cached, allowing to skip work when the game changes few
  bits between draws.
- OpenGL Assembly shaders no longer copy when a region has been modified
  from the GPU to emulate constant buffers, instead GL_EXT_memory_object
  is used to alias sub-buffers within the same allocation.
- OpenGL Assembly shaders stream constant buffer data using
  glProgramBufferParametersIuivNV, from NV_parameter_buffer_object. In
  theory this should save one hash table resolve inside the driver
  compared to glBufferSubData.
- A new OpenGL stream buffer is implemented based on fences for drivers
  that are not Nvidia's proprietary, due to their low performance on
  partial glBufferSubData calls synchronized with 3D rendering (that
  some games use a lot).
- Most optimizations are shared between APIs now, allowing Vulkan to
  cache more bindings than before, skipping unnecesarry work.

This commit adds the necessary infrastructure to use Vulkan object from
OpenGL. Overall, it improves performance and fixes some bugs present on
the old cache. There are still some edge cases hit by some games that
harm performance on some vendors, this are planned to be fixed in later
commits.
This commit is contained in:
ReinUsesLisp 2021-01-16 20:48:58 -03:00
parent a39d9c5194
commit 82c2601555
67 changed files with 2555 additions and 2648 deletions

View file

@ -12,7 +12,6 @@ set(SHADER_FILES
vulkan_blit_depth_stencil.frag
vulkan_present.frag
vulkan_present.vert
vulkan_quad_array.comp
vulkan_quad_indexed.comp
vulkan_uint8.comp
)

View file

@ -1,28 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#version 460 core
layout (local_size_x = 1024) in;
layout (std430, set = 0, binding = 0) buffer OutputBuffer {
uint output_indexes[];
};
layout (push_constant) uniform PushConstants {
uint first;
};
void main() {
uint primitive = gl_GlobalInvocationID.x;
if (primitive * 6 >= output_indexes.length()) {
return;
}
const uint quad_map[6] = uint[](0, 1, 2, 0, 2, 3);
for (uint vertex = 0; vertex < 6; ++vertex) {
uint index = first + primitive * 4 + quad_map[vertex];
output_indexes[primitive * 6 + vertex] = index;
}
}

View file

@ -16,9 +16,16 @@ layout (std430, set = 0, binding = 1) writeonly buffer OutputBuffer {
uint16_t output_indexes[];
};
uint AssembleIndex(uint id) {
// Most primitive restart indices are 0xFF
// Hardcode this to 0xFF for now
uint index = uint(input_indexes[id]);
return index == 0xFF ? 0xFFFF : index;
}
void main() {
uint id = gl_GlobalInvocationID.x;
if (id < input_indexes.length()) {
output_indexes[id] = uint16_t(input_indexes[id]);
output_indexes[id] = uint16_t(AssembleIndex(id));
}
}