commit
97729fd8e9
270 changed files with 33712 additions and 8445 deletions
|
@ -43,6 +43,7 @@ add_library(common STATIC
|
|||
alignment.h
|
||||
assert.cpp
|
||||
assert.h
|
||||
atomic_helpers.h
|
||||
atomic_ops.h
|
||||
detached_tasks.cpp
|
||||
detached_tasks.h
|
||||
|
@ -64,6 +65,7 @@ add_library(common STATIC
|
|||
expected.h
|
||||
fiber.cpp
|
||||
fiber.h
|
||||
fixed_point.h
|
||||
fs/file.cpp
|
||||
fs/file.h
|
||||
fs/fs.cpp
|
||||
|
@ -109,6 +111,7 @@ add_library(common STATIC
|
|||
parent_of_member.h
|
||||
point.h
|
||||
quaternion.h
|
||||
reader_writer_queue.h
|
||||
ring_buffer.h
|
||||
scm_rev.cpp
|
||||
scm_rev.h
|
||||
|
|
772
src/common/atomic_helpers.h
Normal file
772
src/common/atomic_helpers.h
Normal file
|
@ -0,0 +1,772 @@
|
|||
// ©2013-2016 Cameron Desrochers.
|
||||
// Distributed under the simplified BSD license (see the license file that
|
||||
// should have come with this header).
|
||||
// Uses Jeff Preshing's semaphore implementation (under the terms of its
|
||||
// separate zlib license, embedded below).
|
||||
|
||||
#pragma once
|
||||
|
||||
// Provides portable (VC++2010+, Intel ICC 13, GCC 4.7+, and anything C++11 compliant)
|
||||
// implementation of low-level memory barriers, plus a few semi-portable utility macros (for
|
||||
// inlining and alignment). Also has a basic atomic type (limited to hardware-supported atomics with
|
||||
// no memory ordering guarantees). Uses the AE_* prefix for macros (historical reasons), and the
|
||||
// "moodycamel" namespace for symbols.
|
||||
|
||||
#include <cassert>
|
||||
#include <cerrno>
|
||||
#include <cstdint>
|
||||
#include <ctime>
|
||||
#include <type_traits>
|
||||
|
||||
// Platform detection
|
||||
#if defined(__INTEL_COMPILER)
|
||||
#define AE_ICC
|
||||
#elif defined(_MSC_VER)
|
||||
#define AE_VCPP
|
||||
#elif defined(__GNUC__)
|
||||
#define AE_GCC
|
||||
#endif
|
||||
|
||||
#if defined(_M_IA64) || defined(__ia64__)
|
||||
#define AE_ARCH_IA64
|
||||
#elif defined(_WIN64) || defined(__amd64__) || defined(_M_X64) || defined(__x86_64__)
|
||||
#define AE_ARCH_X64
|
||||
#elif defined(_M_IX86) || defined(__i386__)
|
||||
#define AE_ARCH_X86
|
||||
#elif defined(_M_PPC) || defined(__powerpc__)
|
||||
#define AE_ARCH_PPC
|
||||
#else
|
||||
#define AE_ARCH_UNKNOWN
|
||||
#endif
|
||||
|
||||
// AE_UNUSED
|
||||
#define AE_UNUSED(x) ((void)x)
|
||||
|
||||
// AE_NO_TSAN/AE_TSAN_ANNOTATE_*
|
||||
#if defined(__has_feature)
|
||||
#if __has_feature(thread_sanitizer)
|
||||
#if __cplusplus >= 201703L // inline variables require C++17
|
||||
namespace Common {
|
||||
inline int ae_tsan_global;
|
||||
}
|
||||
#define AE_TSAN_ANNOTATE_RELEASE() \
|
||||
AnnotateHappensBefore(__FILE__, __LINE__, (void*)(&::moodycamel::ae_tsan_global))
|
||||
#define AE_TSAN_ANNOTATE_ACQUIRE() \
|
||||
AnnotateHappensAfter(__FILE__, __LINE__, (void*)(&::moodycamel::ae_tsan_global))
|
||||
extern "C" void AnnotateHappensBefore(const char*, int, void*);
|
||||
extern "C" void AnnotateHappensAfter(const char*, int, void*);
|
||||
#else // when we can't work with tsan, attempt to disable its warnings
|
||||
#define AE_NO_TSAN __attribute__((no_sanitize("thread")))
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#ifndef AE_NO_TSAN
|
||||
#define AE_NO_TSAN
|
||||
#endif
|
||||
#ifndef AE_TSAN_ANNOTATE_RELEASE
|
||||
#define AE_TSAN_ANNOTATE_RELEASE()
|
||||
#define AE_TSAN_ANNOTATE_ACQUIRE()
|
||||
#endif
|
||||
|
||||
// AE_FORCEINLINE
|
||||
#if defined(AE_VCPP) || defined(AE_ICC)
|
||||
#define AE_FORCEINLINE __forceinline
|
||||
#elif defined(AE_GCC)
|
||||
//#define AE_FORCEINLINE __attribute__((always_inline))
|
||||
#define AE_FORCEINLINE inline
|
||||
#else
|
||||
#define AE_FORCEINLINE inline
|
||||
#endif
|
||||
|
||||
// AE_ALIGN
|
||||
#if defined(AE_VCPP) || defined(AE_ICC)
|
||||
#define AE_ALIGN(x) __declspec(align(x))
|
||||
#elif defined(AE_GCC)
|
||||
#define AE_ALIGN(x) __attribute__((aligned(x)))
|
||||
#else
|
||||
// Assume GCC compliant syntax...
|
||||
#define AE_ALIGN(x) __attribute__((aligned(x)))
|
||||
#endif
|
||||
|
||||
// Portable atomic fences implemented below:
|
||||
|
||||
namespace Common {
|
||||
|
||||
enum memory_order {
|
||||
memory_order_relaxed,
|
||||
memory_order_acquire,
|
||||
memory_order_release,
|
||||
memory_order_acq_rel,
|
||||
memory_order_seq_cst,
|
||||
|
||||
// memory_order_sync: Forces a full sync:
|
||||
// #LoadLoad, #LoadStore, #StoreStore, and most significantly, #StoreLoad
|
||||
memory_order_sync = memory_order_seq_cst
|
||||
};
|
||||
|
||||
} // namespace Common
|
||||
|
||||
#if (defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))) || \
|
||||
(defined(AE_ICC) && __INTEL_COMPILER < 1600)
|
||||
// VS2010 and ICC13 don't support std::atomic_*_fence, implement our own fences
|
||||
|
||||
#include <intrin.h>
|
||||
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
#define AeFullSync _mm_mfence
|
||||
#define AeLiteSync _mm_mfence
|
||||
#elif defined(AE_ARCH_IA64)
|
||||
#define AeFullSync __mf
|
||||
#define AeLiteSync __mf
|
||||
#elif defined(AE_ARCH_PPC)
|
||||
#include <ppcintrinsics.h>
|
||||
#define AeFullSync __sync
|
||||
#define AeLiteSync __lwsync
|
||||
#endif
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4365) // Disable erroneous 'conversion from long to unsigned int,
|
||||
// signed/unsigned mismatch' error when using `assert`
|
||||
#ifdef __cplusplus_cli
|
||||
#pragma managed(push, off)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
namespace Common {
|
||||
|
||||
AE_FORCEINLINE void compiler_fence(memory_order order) AE_NO_TSAN {
|
||||
switch (order) {
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
_ReadBarrier();
|
||||
break;
|
||||
case memory_order_release:
|
||||
_WriteBarrier();
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
// x86/x64 have a strong memory model -- all loads and stores have
|
||||
// acquire and release semantics automatically (so only need compiler
|
||||
// barriers for those).
|
||||
#if defined(AE_ARCH_X86) || defined(AE_ARCH_X64)
|
||||
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN {
|
||||
switch (order) {
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
_ReadBarrier();
|
||||
break;
|
||||
case memory_order_release:
|
||||
_WriteBarrier();
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
_ReadWriteBarrier();
|
||||
AeFullSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
#else
|
||||
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN {
|
||||
// Non-specialized arch, use heavier memory barriers everywhere just in case :-(
|
||||
switch (order) {
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
_ReadBarrier();
|
||||
AeLiteSync();
|
||||
_ReadBarrier();
|
||||
break;
|
||||
case memory_order_release:
|
||||
_WriteBarrier();
|
||||
AeLiteSync();
|
||||
_WriteBarrier();
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
_ReadWriteBarrier();
|
||||
AeLiteSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
_ReadWriteBarrier();
|
||||
AeFullSync();
|
||||
_ReadWriteBarrier();
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} // namespace Common
|
||||
#else
|
||||
// Use standard library of atomics
|
||||
#include <atomic>
|
||||
|
||||
namespace Common {
|
||||
|
||||
AE_FORCEINLINE void compiler_fence(memory_order order) AE_NO_TSAN {
|
||||
switch (order) {
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
std::atomic_signal_fence(std::memory_order_acquire);
|
||||
break;
|
||||
case memory_order_release:
|
||||
std::atomic_signal_fence(std::memory_order_release);
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
std::atomic_signal_fence(std::memory_order_acq_rel);
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
std::atomic_signal_fence(std::memory_order_seq_cst);
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN {
|
||||
switch (order) {
|
||||
case memory_order_relaxed:
|
||||
break;
|
||||
case memory_order_acquire:
|
||||
AE_TSAN_ANNOTATE_ACQUIRE();
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
break;
|
||||
case memory_order_release:
|
||||
AE_TSAN_ANNOTATE_RELEASE();
|
||||
std::atomic_thread_fence(std::memory_order_release);
|
||||
break;
|
||||
case memory_order_acq_rel:
|
||||
AE_TSAN_ANNOTATE_ACQUIRE();
|
||||
AE_TSAN_ANNOTATE_RELEASE();
|
||||
std::atomic_thread_fence(std::memory_order_acq_rel);
|
||||
break;
|
||||
case memory_order_seq_cst:
|
||||
AE_TSAN_ANNOTATE_ACQUIRE();
|
||||
AE_TSAN_ANNOTATE_RELEASE();
|
||||
std::atomic_thread_fence(std::memory_order_seq_cst);
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Common
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(AE_VCPP) || (_MSC_VER >= 1700 && !defined(__cplusplus_cli))
|
||||
#define AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
#endif
|
||||
|
||||
#ifdef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
#include <atomic>
|
||||
#endif
|
||||
#include <utility>
|
||||
|
||||
// WARNING: *NOT* A REPLACEMENT FOR std::atomic. READ CAREFULLY:
|
||||
// Provides basic support for atomic variables -- no memory ordering guarantees are provided.
|
||||
// The guarantee of atomicity is only made for types that already have atomic load and store
|
||||
// guarantees at the hardware level -- on most platforms this generally means aligned pointers and
|
||||
// integers (only).
|
||||
namespace Common {
|
||||
template <typename T>
|
||||
class weak_atomic {
|
||||
public:
|
||||
AE_NO_TSAN weak_atomic() : value() {}
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4100) // Get rid of (erroneous) 'unreferenced formal parameter' warning
|
||||
#endif
|
||||
template <typename U>
|
||||
AE_NO_TSAN weak_atomic(U&& x) : value(std::forward<U>(x)) {}
|
||||
#ifdef __cplusplus_cli
|
||||
// Work around bug with universal reference/nullptr combination that only appears when /clr is
|
||||
// on
|
||||
AE_NO_TSAN weak_atomic(nullptr_t) : value(nullptr) {}
|
||||
#endif
|
||||
AE_NO_TSAN weak_atomic(weak_atomic const& other) : value(other.load()) {}
|
||||
AE_NO_TSAN weak_atomic(weak_atomic&& other) : value(std::move(other.load())) {}
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
AE_FORCEINLINE operator T() const AE_NO_TSAN {
|
||||
return load();
|
||||
}
|
||||
|
||||
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
template <typename U>
|
||||
AE_FORCEINLINE weak_atomic const& operator=(U&& x) AE_NO_TSAN {
|
||||
value = std::forward<U>(x);
|
||||
return *this;
|
||||
}
|
||||
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) AE_NO_TSAN {
|
||||
value = other.value;
|
||||
return *this;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T load() const AE_NO_TSAN {
|
||||
return value;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T fetch_add_acquire(T increment) AE_NO_TSAN {
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
if (sizeof(T) == 4)
|
||||
return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
|
||||
#if defined(_M_AMD64)
|
||||
else if (sizeof(T) == 8)
|
||||
return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
|
||||
#endif
|
||||
#else
|
||||
#error Unsupported platform
|
||||
#endif
|
||||
assert(false && "T must be either a 32 or 64 bit type");
|
||||
return value;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T fetch_add_release(T increment) AE_NO_TSAN {
|
||||
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
|
||||
if (sizeof(T) == 4)
|
||||
return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
|
||||
#if defined(_M_AMD64)
|
||||
else if (sizeof(T) == 8)
|
||||
return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
|
||||
#endif
|
||||
#else
|
||||
#error Unsupported platform
|
||||
#endif
|
||||
assert(false && "T must be either a 32 or 64 bit type");
|
||||
return value;
|
||||
}
|
||||
#else
|
||||
template <typename U>
|
||||
AE_FORCEINLINE weak_atomic const& operator=(U&& x) AE_NO_TSAN {
|
||||
value.store(std::forward<U>(x), std::memory_order_relaxed);
|
||||
return *this;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) AE_NO_TSAN {
|
||||
value.store(other.value.load(std::memory_order_relaxed), std::memory_order_relaxed);
|
||||
return *this;
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T load() const AE_NO_TSAN {
|
||||
return value.load(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T fetch_add_acquire(T increment) AE_NO_TSAN {
|
||||
return value.fetch_add(increment, std::memory_order_acquire);
|
||||
}
|
||||
|
||||
AE_FORCEINLINE T fetch_add_release(T increment) AE_NO_TSAN {
|
||||
return value.fetch_add(increment, std::memory_order_release);
|
||||
}
|
||||
#endif
|
||||
|
||||
private:
|
||||
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
|
||||
// No std::atomic support, but still need to circumvent compiler optimizations.
|
||||
// `volatile` will make memory access slow, but is guaranteed to be reliable.
|
||||
volatile T value;
|
||||
#else
|
||||
std::atomic<T> value;
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace Common
|
||||
|
||||
// Portable single-producer, single-consumer semaphore below:
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Avoid including windows.h in a header; we only need a handful of
|
||||
// items, so we'll redeclare them here (this is relatively safe since
|
||||
// the API generally has to remain stable between Windows versions).
|
||||
// I know this is an ugly hack but it still beats polluting the global
|
||||
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||
extern "C" {
|
||||
struct _SECURITY_ATTRIBUTES;
|
||||
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes,
|
||||
long lInitialCount, long lMaximumCount,
|
||||
const wchar_t* lpName);
|
||||
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle,
|
||||
unsigned long dwMilliseconds);
|
||||
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount,
|
||||
long* lpPreviousCount);
|
||||
}
|
||||
#elif defined(__MACH__)
|
||||
#include <mach/mach.h>
|
||||
#elif defined(__unix__)
|
||||
#include <semaphore.h>
|
||||
#elif defined(FREERTOS)
|
||||
#include <FreeRTOS.h>
|
||||
#include <semphr.h>
|
||||
#include <task.h>
|
||||
#endif
|
||||
|
||||
namespace Common {
|
||||
// Code in the spsc_sema namespace below is an adaptation of Jeff Preshing's
|
||||
// portable + lightweight semaphore implementations, originally from
|
||||
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||
// LICENSE:
|
||||
// Copyright (c) 2015 Jeff Preshing
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
//
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
//
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgement in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
namespace spsc_sema {
|
||||
#if defined(_WIN32)
|
||||
class Semaphore {
|
||||
private:
|
||||
void* m_hSema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
AE_NO_TSAN Semaphore(int initialCount = 0) : m_hSema() {
|
||||
assert(initialCount >= 0);
|
||||
const long maxLong = 0x7fffffff;
|
||||
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||
assert(m_hSema);
|
||||
}
|
||||
|
||||
AE_NO_TSAN ~Semaphore() {
|
||||
CloseHandle(m_hSema);
|
||||
}
|
||||
|
||||
bool wait() AE_NO_TSAN {
|
||||
const unsigned long infinite = 0xffffffff;
|
||||
return WaitForSingleObject(m_hSema, infinite) == 0;
|
||||
}
|
||||
|
||||
bool try_wait() AE_NO_TSAN {
|
||||
return WaitForSingleObject(m_hSema, 0) == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs) AE_NO_TSAN {
|
||||
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0;
|
||||
}
|
||||
|
||||
void signal(int count = 1) AE_NO_TSAN {
|
||||
while (!ReleaseSemaphore(m_hSema, count, nullptr))
|
||||
;
|
||||
}
|
||||
};
|
||||
#elif defined(__MACH__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (Apple iOS and OSX)
|
||||
// Can't use POSIX semaphores due to
|
||||
// http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||
//---------------------------------------------------------
|
||||
class Semaphore {
|
||||
private:
|
||||
semaphore_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
AE_NO_TSAN Semaphore(int initialCount = 0) : m_sema() {
|
||||
assert(initialCount >= 0);
|
||||
kern_return_t rc =
|
||||
semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||
assert(rc == KERN_SUCCESS);
|
||||
AE_UNUSED(rc);
|
||||
}
|
||||
|
||||
AE_NO_TSAN ~Semaphore() {
|
||||
semaphore_destroy(mach_task_self(), m_sema);
|
||||
}
|
||||
|
||||
bool wait() AE_NO_TSAN {
|
||||
return semaphore_wait(m_sema) == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
bool try_wait() AE_NO_TSAN {
|
||||
return timed_wait(0);
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t timeout_usecs) AE_NO_TSAN {
|
||||
mach_timespec_t ts;
|
||||
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
|
||||
ts.tv_nsec = static_cast<int>((timeout_usecs % 1000000) * 1000);
|
||||
|
||||
// added in OSX 10.10:
|
||||
// https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||
return rc == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
void signal() AE_NO_TSAN {
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS)
|
||||
;
|
||||
}
|
||||
|
||||
void signal(int count) AE_NO_TSAN {
|
||||
while (count-- > 0) {
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS)
|
||||
;
|
||||
}
|
||||
}
|
||||
};
|
||||
#elif defined(__unix__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (POSIX, Linux)
|
||||
//---------------------------------------------------------
|
||||
class Semaphore {
|
||||
private:
|
||||
sem_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
AE_NO_TSAN Semaphore(int initialCount = 0) : m_sema() {
|
||||
assert(initialCount >= 0);
|
||||
int rc = sem_init(&m_sema, 0, static_cast<unsigned int>(initialCount));
|
||||
assert(rc == 0);
|
||||
AE_UNUSED(rc);
|
||||
}
|
||||
|
||||
AE_NO_TSAN ~Semaphore() {
|
||||
sem_destroy(&m_sema);
|
||||
}
|
||||
|
||||
bool wait() AE_NO_TSAN {
|
||||
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_wait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool try_wait() AE_NO_TSAN {
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_trywait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs) AE_NO_TSAN {
|
||||
struct timespec ts;
|
||||
const int usecs_in_1_sec = 1000000;
|
||||
const int nsecs_in_1_sec = 1000000000;
|
||||
clock_gettime(CLOCK_REALTIME, &ts);
|
||||
ts.tv_sec += static_cast<time_t>(usecs / usecs_in_1_sec);
|
||||
ts.tv_nsec += static_cast<long>(usecs % usecs_in_1_sec) * 1000;
|
||||
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||
// so we have to clean things up before passing it in
|
||||
if (ts.tv_nsec >= nsecs_in_1_sec) {
|
||||
ts.tv_nsec -= nsecs_in_1_sec;
|
||||
++ts.tv_sec;
|
||||
}
|
||||
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_timedwait(&m_sema, &ts);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
void signal() AE_NO_TSAN {
|
||||
while (sem_post(&m_sema) == -1)
|
||||
;
|
||||
}
|
||||
|
||||
void signal(int count) AE_NO_TSAN {
|
||||
while (count-- > 0) {
|
||||
while (sem_post(&m_sema) == -1)
|
||||
;
|
||||
}
|
||||
}
|
||||
};
|
||||
#elif defined(FREERTOS)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (FreeRTOS)
|
||||
//---------------------------------------------------------
|
||||
class Semaphore {
|
||||
private:
|
||||
SemaphoreHandle_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other);
|
||||
Semaphore& operator=(const Semaphore& other);
|
||||
|
||||
public:
|
||||
AE_NO_TSAN Semaphore(int initialCount = 0) : m_sema() {
|
||||
assert(initialCount >= 0);
|
||||
m_sema = xSemaphoreCreateCounting(static_cast<UBaseType_t>(~0ull),
|
||||
static_cast<UBaseType_t>(initialCount));
|
||||
assert(m_sema);
|
||||
}
|
||||
|
||||
AE_NO_TSAN ~Semaphore() {
|
||||
vSemaphoreDelete(m_sema);
|
||||
}
|
||||
|
||||
bool wait() AE_NO_TSAN {
|
||||
return xSemaphoreTake(m_sema, portMAX_DELAY) == pdTRUE;
|
||||
}
|
||||
|
||||
bool try_wait() AE_NO_TSAN {
|
||||
// Note: In an ISR context, if this causes a task to unblock,
|
||||
// the caller won't know about it
|
||||
if (xPortIsInsideInterrupt())
|
||||
return xSemaphoreTakeFromISR(m_sema, NULL) == pdTRUE;
|
||||
return xSemaphoreTake(m_sema, 0) == pdTRUE;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs) AE_NO_TSAN {
|
||||
std::uint64_t msecs = usecs / 1000;
|
||||
TickType_t ticks = static_cast<TickType_t>(msecs / portTICK_PERIOD_MS);
|
||||
if (ticks == 0)
|
||||
return try_wait();
|
||||
return xSemaphoreTake(m_sema, ticks) == pdTRUE;
|
||||
}
|
||||
|
||||
void signal() AE_NO_TSAN {
|
||||
// Note: In an ISR context, if this causes a task to unblock,
|
||||
// the caller won't know about it
|
||||
BaseType_t rc;
|
||||
if (xPortIsInsideInterrupt())
|
||||
rc = xSemaphoreGiveFromISR(m_sema, NULL);
|
||||
else
|
||||
rc = xSemaphoreGive(m_sema);
|
||||
assert(rc == pdTRUE);
|
||||
AE_UNUSED(rc);
|
||||
}
|
||||
|
||||
void signal(int count) AE_NO_TSAN {
|
||||
while (count-- > 0)
|
||||
signal();
|
||||
}
|
||||
};
|
||||
#else
|
||||
#error Unsupported platform! (No semaphore wrapper available)
|
||||
#endif
|
||||
|
||||
//---------------------------------------------------------
|
||||
// LightweightSemaphore
|
||||
//---------------------------------------------------------
|
||||
class LightweightSemaphore {
|
||||
public:
|
||||
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||
|
||||
private:
|
||||
weak_atomic<ssize_t> m_count;
|
||||
Semaphore m_sema;
|
||||
|
||||
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1) AE_NO_TSAN {
|
||||
ssize_t oldCount;
|
||||
// Is there a better way to set the initial spin count?
|
||||
// If we lower it to 1000, testBenaphore becomes 15x slower on my Core i7-5930K Windows PC,
|
||||
// as threads start hitting the kernel semaphore.
|
||||
int spin = 1024;
|
||||
while (--spin >= 0) {
|
||||
if (m_count.load() > 0) {
|
||||
m_count.fetch_add_acquire(-1);
|
||||
return true;
|
||||
}
|
||||
compiler_fence(memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||
}
|
||||
oldCount = m_count.fetch_add_acquire(-1);
|
||||
if (oldCount > 0)
|
||||
return true;
|
||||
if (timeout_usecs < 0) {
|
||||
if (m_sema.wait())
|
||||
return true;
|
||||
}
|
||||
if (timeout_usecs > 0 && m_sema.timed_wait(static_cast<uint64_t>(timeout_usecs)))
|
||||
return true;
|
||||
// At this point, we've timed out waiting for the semaphore, but the
|
||||
// count is still decremented indicating we may still be waiting on
|
||||
// it. So we have to re-adjust the count, but only if the semaphore
|
||||
// wasn't signaled enough times for us too since then. If it was, we
|
||||
// need to release the semaphore too.
|
||||
while (true) {
|
||||
oldCount = m_count.fetch_add_release(1);
|
||||
if (oldCount < 0)
|
||||
return false; // successfully restored things to the way they were
|
||||
// Oh, the producer thread just signaled the semaphore after all. Try again:
|
||||
oldCount = m_count.fetch_add_acquire(-1);
|
||||
if (oldCount > 0 && m_sema.try_wait())
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
AE_NO_TSAN LightweightSemaphore(ssize_t initialCount = 0) : m_count(initialCount), m_sema() {
|
||||
assert(initialCount >= 0);
|
||||
}
|
||||
|
||||
bool tryWait() AE_NO_TSAN {
|
||||
if (m_count.load() > 0) {
|
||||
m_count.fetch_add_acquire(-1);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool wait() AE_NO_TSAN {
|
||||
return tryWait() || waitWithPartialSpinning();
|
||||
}
|
||||
|
||||
bool wait(std::int64_t timeout_usecs) AE_NO_TSAN {
|
||||
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||
}
|
||||
|
||||
void signal(ssize_t count = 1) AE_NO_TSAN {
|
||||
assert(count >= 0);
|
||||
ssize_t oldCount = m_count.fetch_add_release(count);
|
||||
assert(oldCount >= -1);
|
||||
if (oldCount < 0) {
|
||||
m_sema.signal(1);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t availableApprox() const AE_NO_TSAN {
|
||||
ssize_t count = m_count.load();
|
||||
return count > 0 ? static_cast<std::size_t>(count) : 0;
|
||||
}
|
||||
};
|
||||
} // namespace spsc_sema
|
||||
} // namespace Common
|
||||
|
||||
#if defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))
|
||||
#pragma warning(pop)
|
||||
#ifdef __cplusplus_cli
|
||||
#pragma managed(pop)
|
||||
#endif
|
||||
#endif
|
726
src/common/fixed_point.h
Normal file
726
src/common/fixed_point.h
Normal file
|
@ -0,0 +1,726 @@
|
|||
// From: https://github.com/eteran/cpp-utilities/blob/master/fixed/include/cpp-utilities/fixed.h
|
||||
// See also: http://stackoverflow.com/questions/79677/whats-the-best-way-to-do-fixed-point-math
|
||||
/*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2015 Evan Teran
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef FIXED_H_
|
||||
#define FIXED_H_
|
||||
|
||||
#if __cplusplus >= 201402L
|
||||
#define CONSTEXPR14 constexpr
|
||||
#else
|
||||
#define CONSTEXPR14
|
||||
#endif
|
||||
|
||||
#include <cstddef> // for size_t
|
||||
#include <cstdint>
|
||||
#include <exception>
|
||||
#include <ostream>
|
||||
#include <type_traits>
|
||||
|
||||
namespace Common {
|
||||
|
||||
template <size_t I, size_t F>
|
||||
class FixedPoint;
|
||||
|
||||
namespace detail {
|
||||
|
||||
// helper templates to make magic with types :)
|
||||
// these allow us to determine resonable types from
|
||||
// a desired size, they also let us infer the next largest type
|
||||
// from a type which is nice for the division op
|
||||
template <size_t T>
|
||||
struct type_from_size {
|
||||
using value_type = void;
|
||||
using unsigned_type = void;
|
||||
using signed_type = void;
|
||||
static constexpr bool is_specialized = false;
|
||||
};
|
||||
|
||||
#if defined(__GNUC__) && defined(__x86_64__) && !defined(__STRICT_ANSI__)
|
||||
template <>
|
||||
struct type_from_size<128> {
|
||||
static constexpr bool is_specialized = true;
|
||||
static constexpr size_t size = 128;
|
||||
|
||||
using value_type = __int128;
|
||||
using unsigned_type = unsigned __int128;
|
||||
using signed_type = __int128;
|
||||
using next_size = type_from_size<256>;
|
||||
};
|
||||
#endif
|
||||
|
||||
template <>
|
||||
struct type_from_size<64> {
|
||||
static constexpr bool is_specialized = true;
|
||||
static constexpr size_t size = 64;
|
||||
|
||||
using value_type = int64_t;
|
||||
using unsigned_type = std::make_unsigned<value_type>::type;
|
||||
using signed_type = std::make_signed<value_type>::type;
|
||||
using next_size = type_from_size<128>;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_from_size<32> {
|
||||
static constexpr bool is_specialized = true;
|
||||
static constexpr size_t size = 32;
|
||||
|
||||
using value_type = int32_t;
|
||||
using unsigned_type = std::make_unsigned<value_type>::type;
|
||||
using signed_type = std::make_signed<value_type>::type;
|
||||
using next_size = type_from_size<64>;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_from_size<16> {
|
||||
static constexpr bool is_specialized = true;
|
||||
static constexpr size_t size = 16;
|
||||
|
||||
using value_type = int16_t;
|
||||
using unsigned_type = std::make_unsigned<value_type>::type;
|
||||
using signed_type = std::make_signed<value_type>::type;
|
||||
using next_size = type_from_size<32>;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_from_size<8> {
|
||||
static constexpr bool is_specialized = true;
|
||||
static constexpr size_t size = 8;
|
||||
|
||||
using value_type = int8_t;
|
||||
using unsigned_type = std::make_unsigned<value_type>::type;
|
||||
using signed_type = std::make_signed<value_type>::type;
|
||||
using next_size = type_from_size<16>;
|
||||
};
|
||||
|
||||
// this is to assist in adding support for non-native base
|
||||
// types (for adding big-int support), this should be fine
|
||||
// unless your bit-int class doesn't nicely support casting
|
||||
template <class B, class N>
|
||||
constexpr B next_to_base(N rhs) {
|
||||
return static_cast<B>(rhs);
|
||||
}
|
||||
|
||||
struct divide_by_zero : std::exception {};
|
||||
|
||||
template <size_t I, size_t F>
|
||||
CONSTEXPR14 FixedPoint<I, F> divide(
|
||||
FixedPoint<I, F> numerator, FixedPoint<I, F> denominator, FixedPoint<I, F>& remainder,
|
||||
typename std::enable_if<type_from_size<I + F>::next_size::is_specialized>::type* = nullptr) {
|
||||
|
||||
using next_type = typename FixedPoint<I, F>::next_type;
|
||||
using base_type = typename FixedPoint<I, F>::base_type;
|
||||
constexpr size_t fractional_bits = FixedPoint<I, F>::fractional_bits;
|
||||
|
||||
next_type t(numerator.to_raw());
|
||||
t <<= fractional_bits;
|
||||
|
||||
FixedPoint<I, F> quotient;
|
||||
|
||||
quotient = FixedPoint<I, F>::from_base(next_to_base<base_type>(t / denominator.to_raw()));
|
||||
remainder = FixedPoint<I, F>::from_base(next_to_base<base_type>(t % denominator.to_raw()));
|
||||
|
||||
return quotient;
|
||||
}
|
||||
|
||||
template <size_t I, size_t F>
|
||||
CONSTEXPR14 FixedPoint<I, F> divide(
|
||||
FixedPoint<I, F> numerator, FixedPoint<I, F> denominator, FixedPoint<I, F>& remainder,
|
||||
typename std::enable_if<!type_from_size<I + F>::next_size::is_specialized>::type* = nullptr) {
|
||||
|
||||
using unsigned_type = typename FixedPoint<I, F>::unsigned_type;
|
||||
|
||||
constexpr int bits = FixedPoint<I, F>::total_bits;
|
||||
|
||||
if (denominator == 0) {
|
||||
throw divide_by_zero();
|
||||
} else {
|
||||
|
||||
int sign = 0;
|
||||
|
||||
FixedPoint<I, F> quotient;
|
||||
|
||||
if (numerator < 0) {
|
||||
sign ^= 1;
|
||||
numerator = -numerator;
|
||||
}
|
||||
|
||||
if (denominator < 0) {
|
||||
sign ^= 1;
|
||||
denominator = -denominator;
|
||||
}
|
||||
|
||||
unsigned_type n = numerator.to_raw();
|
||||
unsigned_type d = denominator.to_raw();
|
||||
unsigned_type x = 1;
|
||||
unsigned_type answer = 0;
|
||||
|
||||
// egyptian division algorithm
|
||||
while ((n >= d) && (((d >> (bits - 1)) & 1) == 0)) {
|
||||
x <<= 1;
|
||||
d <<= 1;
|
||||
}
|
||||
|
||||
while (x != 0) {
|
||||
if (n >= d) {
|
||||
n -= d;
|
||||
answer += x;
|
||||
}
|
||||
|
||||
x >>= 1;
|
||||
d >>= 1;
|
||||
}
|
||||
|
||||
unsigned_type l1 = n;
|
||||
unsigned_type l2 = denominator.to_raw();
|
||||
|
||||
// calculate the lower bits (needs to be unsigned)
|
||||
while (l1 >> (bits - F) > 0) {
|
||||
l1 >>= 1;
|
||||
l2 >>= 1;
|
||||
}
|
||||
const unsigned_type lo = (l1 << F) / l2;
|
||||
|
||||
quotient = FixedPoint<I, F>::from_base((answer << F) | lo);
|
||||
remainder = n;
|
||||
|
||||
if (sign) {
|
||||
quotient = -quotient;
|
||||
}
|
||||
|
||||
return quotient;
|
||||
}
|
||||
}
|
||||
|
||||
// this is the usual implementation of multiplication
|
||||
template <size_t I, size_t F>
|
||||
CONSTEXPR14 FixedPoint<I, F> multiply(
|
||||
FixedPoint<I, F> lhs, FixedPoint<I, F> rhs,
|
||||
typename std::enable_if<type_from_size<I + F>::next_size::is_specialized>::type* = nullptr) {
|
||||
|
||||
using next_type = typename FixedPoint<I, F>::next_type;
|
||||
using base_type = typename FixedPoint<I, F>::base_type;
|
||||
|
||||
constexpr size_t fractional_bits = FixedPoint<I, F>::fractional_bits;
|
||||
|
||||
next_type t(static_cast<next_type>(lhs.to_raw()) * static_cast<next_type>(rhs.to_raw()));
|
||||
t >>= fractional_bits;
|
||||
|
||||
return FixedPoint<I, F>::from_base(next_to_base<base_type>(t));
|
||||
}
|
||||
|
||||
// this is the fall back version we use when we don't have a next size
|
||||
// it is slightly slower, but is more robust since it doesn't
|
||||
// require and upgraded type
|
||||
template <size_t I, size_t F>
|
||||
CONSTEXPR14 FixedPoint<I, F> multiply(
|
||||
FixedPoint<I, F> lhs, FixedPoint<I, F> rhs,
|
||||
typename std::enable_if<!type_from_size<I + F>::next_size::is_specialized>::type* = nullptr) {
|
||||
|
||||
using base_type = typename FixedPoint<I, F>::base_type;
|
||||
|
||||
constexpr size_t fractional_bits = FixedPoint<I, F>::fractional_bits;
|
||||
constexpr base_type integer_mask = FixedPoint<I, F>::integer_mask;
|
||||
constexpr base_type fractional_mask = FixedPoint<I, F>::fractional_mask;
|
||||
|
||||
// more costly but doesn't need a larger type
|
||||
const base_type a_hi = (lhs.to_raw() & integer_mask) >> fractional_bits;
|
||||
const base_type b_hi = (rhs.to_raw() & integer_mask) >> fractional_bits;
|
||||
const base_type a_lo = (lhs.to_raw() & fractional_mask);
|
||||
const base_type b_lo = (rhs.to_raw() & fractional_mask);
|
||||
|
||||
const base_type x1 = a_hi * b_hi;
|
||||
const base_type x2 = a_hi * b_lo;
|
||||
const base_type x3 = a_lo * b_hi;
|
||||
const base_type x4 = a_lo * b_lo;
|
||||
|
||||
return FixedPoint<I, F>::from_base((x1 << fractional_bits) + (x3 + x2) +
|
||||
(x4 >> fractional_bits));
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
template <size_t I, size_t F>
|
||||
class FixedPoint {
|
||||
static_assert(detail::type_from_size<I + F>::is_specialized, "invalid combination of sizes");
|
||||
|
||||
public:
|
||||
static constexpr size_t fractional_bits = F;
|
||||
static constexpr size_t integer_bits = I;
|
||||
static constexpr size_t total_bits = I + F;
|
||||
|
||||
using base_type_info = detail::type_from_size<total_bits>;
|
||||
|
||||
using base_type = typename base_type_info::value_type;
|
||||
using next_type = typename base_type_info::next_size::value_type;
|
||||
using unsigned_type = typename base_type_info::unsigned_type;
|
||||
|
||||
public:
|
||||
#ifdef __GNUC__
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Woverflow"
|
||||
#endif
|
||||
static constexpr base_type fractional_mask =
|
||||
~(static_cast<unsigned_type>(~base_type(0)) << fractional_bits);
|
||||
static constexpr base_type integer_mask = ~fractional_mask;
|
||||
#ifdef __GNUC__
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
public:
|
||||
static constexpr base_type one = base_type(1) << fractional_bits;
|
||||
|
||||
public: // constructors
|
||||
FixedPoint() = default;
|
||||
FixedPoint(const FixedPoint&) = default;
|
||||
FixedPoint(FixedPoint&&) = default;
|
||||
FixedPoint& operator=(const FixedPoint&) = default;
|
||||
|
||||
template <class Number>
|
||||
constexpr FixedPoint(
|
||||
Number n, typename std::enable_if<std::is_arithmetic<Number>::value>::type* = nullptr)
|
||||
: data_(static_cast<base_type>(n * one)) {}
|
||||
|
||||
public: // conversion
|
||||
template <size_t I2, size_t F2>
|
||||
CONSTEXPR14 explicit FixedPoint(FixedPoint<I2, F2> other) {
|
||||
static_assert(I2 <= I && F2 <= F, "Scaling conversion can only upgrade types");
|
||||
using T = FixedPoint<I2, F2>;
|
||||
|
||||
const base_type fractional = (other.data_ & T::fractional_mask);
|
||||
const base_type integer = (other.data_ & T::integer_mask) >> T::fractional_bits;
|
||||
data_ =
|
||||
(integer << fractional_bits) | (fractional << (fractional_bits - T::fractional_bits));
|
||||
}
|
||||
|
||||
private:
|
||||
// this makes it simpler to create a FixedPoint point object from
|
||||
// a native type without scaling
|
||||
// use "FixedPoint::from_base" in order to perform this.
|
||||
struct NoScale {};
|
||||
|
||||
constexpr FixedPoint(base_type n, const NoScale&) : data_(n) {}
|
||||
|
||||
public:
|
||||
static constexpr FixedPoint from_base(base_type n) {
|
||||
return FixedPoint(n, NoScale());
|
||||
}
|
||||
|
||||
public: // comparison operators
|
||||
constexpr bool operator==(FixedPoint rhs) const {
|
||||
return data_ == rhs.data_;
|
||||
}
|
||||
|
||||
constexpr bool operator!=(FixedPoint rhs) const {
|
||||
return data_ != rhs.data_;
|
||||
}
|
||||
|
||||
constexpr bool operator<(FixedPoint rhs) const {
|
||||
return data_ < rhs.data_;
|
||||
}
|
||||
|
||||
constexpr bool operator>(FixedPoint rhs) const {
|
||||
return data_ > rhs.data_;
|
||||
}
|
||||
|
||||
constexpr bool operator<=(FixedPoint rhs) const {
|
||||
return data_ <= rhs.data_;
|
||||
}
|
||||
|
||||
constexpr bool operator>=(FixedPoint rhs) const {
|
||||
return data_ >= rhs.data_;
|
||||
}
|
||||
|
||||
public: // unary operators
|
||||
constexpr bool operator!() const {
|
||||
return !data_;
|
||||
}
|
||||
|
||||
constexpr FixedPoint operator~() const {
|
||||
// NOTE(eteran): this will often appear to "just negate" the value
|
||||
// that is not an error, it is because -x == (~x+1)
|
||||
// and that "+1" is adding an infinitesimally small fraction to the
|
||||
// complimented value
|
||||
return FixedPoint::from_base(~data_);
|
||||
}
|
||||
|
||||
constexpr FixedPoint operator-() const {
|
||||
return FixedPoint::from_base(-data_);
|
||||
}
|
||||
|
||||
constexpr FixedPoint operator+() const {
|
||||
return FixedPoint::from_base(+data_);
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint& operator++() {
|
||||
data_ += one;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint& operator--() {
|
||||
data_ -= one;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint operator++(int) {
|
||||
FixedPoint tmp(*this);
|
||||
data_ += one;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint operator--(int) {
|
||||
FixedPoint tmp(*this);
|
||||
data_ -= one;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
public: // basic math operators
|
||||
CONSTEXPR14 FixedPoint& operator+=(FixedPoint n) {
|
||||
data_ += n.data_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint& operator-=(FixedPoint n) {
|
||||
data_ -= n.data_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint& operator*=(FixedPoint n) {
|
||||
return assign(detail::multiply(*this, n));
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint& operator/=(FixedPoint n) {
|
||||
FixedPoint temp;
|
||||
return assign(detail::divide(*this, n, temp));
|
||||
}
|
||||
|
||||
private:
|
||||
CONSTEXPR14 FixedPoint& assign(FixedPoint rhs) {
|
||||
data_ = rhs.data_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
public: // binary math operators, effects underlying bit pattern since these
|
||||
// don't really typically make sense for non-integer values
|
||||
CONSTEXPR14 FixedPoint& operator&=(FixedPoint n) {
|
||||
data_ &= n.data_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint& operator|=(FixedPoint n) {
|
||||
data_ |= n.data_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CONSTEXPR14 FixedPoint& operator^=(FixedPoint n) {
|
||||
data_ ^= n.data_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <class Integer,
|
||||
class = typename std::enable_if<std::is_integral<Integer>::value>::type>
|
||||
CONSTEXPR14 FixedPoint& operator>>=(Integer n) {
|
||||
data_ >>= n;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <class Integer,
|
||||
class = typename std::enable_if<std::is_integral<Integer>::value>::type>
|
||||
CONSTEXPR14 FixedPoint& operator<<=(Integer n) {
|
||||
data_ <<= n;
|
||||
return *this;
|
||||
}
|
||||
|
||||
public: // conversion to basic types
|
||||
constexpr void round_up() {
|
||||
data_ += (data_ & fractional_mask) >> 1;
|
||||
}
|
||||
|
||||
constexpr int to_int() {
|
||||
round_up();
|
||||
return static_cast<int>((data_ & integer_mask) >> fractional_bits);
|
||||
}
|
||||
|
||||
constexpr unsigned int to_uint() const {
|
||||
round_up();
|
||||
return static_cast<unsigned int>((data_ & integer_mask) >> fractional_bits);
|
||||
}
|
||||
|
||||
constexpr int64_t to_long() {
|
||||
round_up();
|
||||
return static_cast<int64_t>((data_ & integer_mask) >> fractional_bits);
|
||||
}
|
||||
|
||||
constexpr int to_int_floor() const {
|
||||
return static_cast<int>((data_ & integer_mask) >> fractional_bits);
|
||||
}
|
||||
|
||||
constexpr int64_t to_long_floor() {
|
||||
return static_cast<int64_t>((data_ & integer_mask) >> fractional_bits);
|
||||
}
|
||||
|
||||
constexpr unsigned int to_uint_floor() const {
|
||||
return static_cast<unsigned int>((data_ & integer_mask) >> fractional_bits);
|
||||
}
|
||||
|
||||
constexpr float to_float() const {
|
||||
return static_cast<float>(data_) / FixedPoint::one;
|
||||
}
|
||||
|
||||
constexpr double to_double() const {
|
||||
return static_cast<double>(data_) / FixedPoint::one;
|
||||
}
|
||||
|
||||
constexpr base_type to_raw() const {
|
||||
return data_;
|
||||
}
|
||||
|
||||
constexpr void clear_int() {
|
||||
data_ &= fractional_mask;
|
||||
}
|
||||
|
||||
constexpr base_type get_frac() const {
|
||||
return data_ & fractional_mask;
|
||||
}
|
||||
|
||||
public:
|
||||
CONSTEXPR14 void swap(FixedPoint& rhs) {
|
||||
using std::swap;
|
||||
swap(data_, rhs.data_);
|
||||
}
|
||||
|
||||
public:
|
||||
base_type data_;
|
||||
};
|
||||
|
||||
// if we have the same fractional portion, but differing integer portions, we trivially upgrade the
|
||||
// smaller type
|
||||
template <size_t I1, size_t I2, size_t F>
|
||||
CONSTEXPR14 typename std::conditional<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>::type
|
||||
operator+(FixedPoint<I1, F> lhs, FixedPoint<I2, F> rhs) {
|
||||
|
||||
using T = typename std::conditional<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>::type;
|
||||
|
||||
const T l = T::from_base(lhs.to_raw());
|
||||
const T r = T::from_base(rhs.to_raw());
|
||||
return l + r;
|
||||
}
|
||||
|
||||
template <size_t I1, size_t I2, size_t F>
|
||||
CONSTEXPR14 typename std::conditional<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>::type
|
||||
operator-(FixedPoint<I1, F> lhs, FixedPoint<I2, F> rhs) {
|
||||
|
||||
using T = typename std::conditional<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>::type;
|
||||
|
||||
const T l = T::from_base(lhs.to_raw());
|
||||
const T r = T::from_base(rhs.to_raw());
|
||||
return l - r;
|
||||
}
|
||||
|
||||
template <size_t I1, size_t I2, size_t F>
|
||||
CONSTEXPR14 typename std::conditional<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>::type
|
||||
operator*(FixedPoint<I1, F> lhs, FixedPoint<I2, F> rhs) {
|
||||
|
||||
using T = typename std::conditional<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>::type;
|
||||
|
||||
const T l = T::from_base(lhs.to_raw());
|
||||
const T r = T::from_base(rhs.to_raw());
|
||||
return l * r;
|
||||
}
|
||||
|
||||
template <size_t I1, size_t I2, size_t F>
|
||||
CONSTEXPR14 typename std::conditional<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>::type
|
||||
operator/(FixedPoint<I1, F> lhs, FixedPoint<I2, F> rhs) {
|
||||
|
||||
using T = typename std::conditional<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>::type;
|
||||
|
||||
const T l = T::from_base(lhs.to_raw());
|
||||
const T r = T::from_base(rhs.to_raw());
|
||||
return l / r;
|
||||
}
|
||||
|
||||
template <size_t I, size_t F>
|
||||
std::ostream& operator<<(std::ostream& os, FixedPoint<I, F> f) {
|
||||
os << f.to_double();
|
||||
return os;
|
||||
}
|
||||
|
||||
// basic math operators
|
||||
template <size_t I, size_t F>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator+(FixedPoint<I, F> lhs, FixedPoint<I, F> rhs) {
|
||||
lhs += rhs;
|
||||
return lhs;
|
||||
}
|
||||
template <size_t I, size_t F>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator-(FixedPoint<I, F> lhs, FixedPoint<I, F> rhs) {
|
||||
lhs -= rhs;
|
||||
return lhs;
|
||||
}
|
||||
template <size_t I, size_t F>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator*(FixedPoint<I, F> lhs, FixedPoint<I, F> rhs) {
|
||||
lhs *= rhs;
|
||||
return lhs;
|
||||
}
|
||||
template <size_t I, size_t F>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator/(FixedPoint<I, F> lhs, FixedPoint<I, F> rhs) {
|
||||
lhs /= rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator+(FixedPoint<I, F> lhs, Number rhs) {
|
||||
lhs += FixedPoint<I, F>(rhs);
|
||||
return lhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator-(FixedPoint<I, F> lhs, Number rhs) {
|
||||
lhs -= FixedPoint<I, F>(rhs);
|
||||
return lhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator*(FixedPoint<I, F> lhs, Number rhs) {
|
||||
lhs *= FixedPoint<I, F>(rhs);
|
||||
return lhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator/(FixedPoint<I, F> lhs, Number rhs) {
|
||||
lhs /= FixedPoint<I, F>(rhs);
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator+(Number lhs, FixedPoint<I, F> rhs) {
|
||||
FixedPoint<I, F> tmp(lhs);
|
||||
tmp += rhs;
|
||||
return tmp;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator-(Number lhs, FixedPoint<I, F> rhs) {
|
||||
FixedPoint<I, F> tmp(lhs);
|
||||
tmp -= rhs;
|
||||
return tmp;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator*(Number lhs, FixedPoint<I, F> rhs) {
|
||||
FixedPoint<I, F> tmp(lhs);
|
||||
tmp *= rhs;
|
||||
return tmp;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator/(Number lhs, FixedPoint<I, F> rhs) {
|
||||
FixedPoint<I, F> tmp(lhs);
|
||||
tmp /= rhs;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
// shift operators
|
||||
template <size_t I, size_t F, class Integer,
|
||||
class = typename std::enable_if<std::is_integral<Integer>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator<<(FixedPoint<I, F> lhs, Integer rhs) {
|
||||
lhs <<= rhs;
|
||||
return lhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Integer,
|
||||
class = typename std::enable_if<std::is_integral<Integer>::value>::type>
|
||||
CONSTEXPR14 FixedPoint<I, F> operator>>(FixedPoint<I, F> lhs, Integer rhs) {
|
||||
lhs >>= rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
// comparison operators
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator>(FixedPoint<I, F> lhs, Number rhs) {
|
||||
return lhs > FixedPoint<I, F>(rhs);
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator<(FixedPoint<I, F> lhs, Number rhs) {
|
||||
return lhs < FixedPoint<I, F>(rhs);
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator>=(FixedPoint<I, F> lhs, Number rhs) {
|
||||
return lhs >= FixedPoint<I, F>(rhs);
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator<=(FixedPoint<I, F> lhs, Number rhs) {
|
||||
return lhs <= FixedPoint<I, F>(rhs);
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator==(FixedPoint<I, F> lhs, Number rhs) {
|
||||
return lhs == FixedPoint<I, F>(rhs);
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator!=(FixedPoint<I, F> lhs, Number rhs) {
|
||||
return lhs != FixedPoint<I, F>(rhs);
|
||||
}
|
||||
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator>(Number lhs, FixedPoint<I, F> rhs) {
|
||||
return FixedPoint<I, F>(lhs) > rhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator<(Number lhs, FixedPoint<I, F> rhs) {
|
||||
return FixedPoint<I, F>(lhs) < rhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator>=(Number lhs, FixedPoint<I, F> rhs) {
|
||||
return FixedPoint<I, F>(lhs) >= rhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator<=(Number lhs, FixedPoint<I, F> rhs) {
|
||||
return FixedPoint<I, F>(lhs) <= rhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator==(Number lhs, FixedPoint<I, F> rhs) {
|
||||
return FixedPoint<I, F>(lhs) == rhs;
|
||||
}
|
||||
template <size_t I, size_t F, class Number,
|
||||
class = typename std::enable_if<std::is_arithmetic<Number>::value>::type>
|
||||
constexpr bool operator!=(Number lhs, FixedPoint<I, F> rhs) {
|
||||
return FixedPoint<I, F>(lhs) != rhs;
|
||||
}
|
||||
|
||||
} // namespace Common
|
||||
|
||||
#undef CONSTEXPR14
|
||||
|
||||
#endif
|
941
src/common/reader_writer_queue.h
Normal file
941
src/common/reader_writer_queue.h
Normal file
|
@ -0,0 +1,941 @@
|
|||
// ©2013-2020 Cameron Desrochers.
|
||||
// Distributed under the simplified BSD license (see the license file that
|
||||
// should have come with this header).
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
#include <cstdlib> // For malloc/free/abort & size_t
|
||||
#include <memory>
|
||||
#include <new>
|
||||
#include <stdexcept>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "common/atomic_helpers.h"
|
||||
|
||||
#if __cplusplus > 199711L || _MSC_VER >= 1700 // C++11 or VS2012
|
||||
#include <chrono>
|
||||
#endif
|
||||
|
||||
// A lock-free queue for a single-consumer, single-producer architecture.
|
||||
// The queue is also wait-free in the common path (except if more memory
|
||||
// needs to be allocated, in which case malloc is called).
|
||||
// Allocates memory sparingly, and only once if the original maximum size
|
||||
// estimate is never exceeded.
|
||||
// Tested on x86/x64 processors, but semantics should be correct for all
|
||||
// architectures (given the right implementations in atomicops.h), provided
|
||||
// that aligned integer and pointer accesses are naturally atomic.
|
||||
// Note that there should only be one consumer thread and producer thread;
|
||||
// Switching roles of the threads, or using multiple consecutive threads for
|
||||
// one role, is not safe unless properly synchronized.
|
||||
// Using the queue exclusively from one thread is fine, though a bit silly.
|
||||
|
||||
#ifndef MOODYCAMEL_CACHE_LINE_SIZE
|
||||
#define MOODYCAMEL_CACHE_LINE_SIZE 64
|
||||
#endif
|
||||
|
||||
#ifndef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
#if (defined(_MSC_VER) && defined(_CPPUNWIND)) || (defined(__GNUC__) && defined(__EXCEPTIONS)) || \
|
||||
(!defined(_MSC_VER) && !defined(__GNUC__))
|
||||
#define MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef MOODYCAMEL_HAS_EMPLACE
|
||||
#if !defined(_MSC_VER) || \
|
||||
_MSC_VER >= 1800 // variadic templates: either a non-MS compiler or VS >= 2013
|
||||
#define MOODYCAMEL_HAS_EMPLACE 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE
|
||||
#if defined(__APPLE__) && defined(__MACH__) && __cplusplus >= 201703L
|
||||
// This is required to find out what deployment target we are using
|
||||
#include <CoreFoundation/CoreFoundation.h>
|
||||
#if !defined(MAC_OS_X_VERSION_MIN_REQUIRED) || \
|
||||
MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_14
|
||||
// C++17 new(size_t, align_val_t) is not backwards-compatible with older versions of macOS, so we
|
||||
// can't support over-alignment in this case
|
||||
#define MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE
|
||||
#define MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE AE_ALIGN(MOODYCAMEL_CACHE_LINE_SIZE)
|
||||
#endif
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4324) // structure was padded due to __declspec(align())
|
||||
#pragma warning(disable : 4820) // padding was added
|
||||
#pragma warning(disable : 4127) // conditional expression is constant
|
||||
#endif
|
||||
|
||||
namespace Common {
|
||||
|
||||
template <typename T, size_t MAX_BLOCK_SIZE = 512>
|
||||
class MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE ReaderWriterQueue {
|
||||
// Design: Based on a queue-of-queues. The low-level queues are just
|
||||
// circular buffers with front and tail indices indicating where the
|
||||
// next element to dequeue is and where the next element can be enqueued,
|
||||
// respectively. Each low-level queue is called a "block". Each block
|
||||
// wastes exactly one element's worth of space to keep the design simple
|
||||
// (if front == tail then the queue is empty, and can't be full).
|
||||
// The high-level queue is a circular linked list of blocks; again there
|
||||
// is a front and tail, but this time they are pointers to the blocks.
|
||||
// The front block is where the next element to be dequeued is, provided
|
||||
// the block is not empty. The back block is where elements are to be
|
||||
// enqueued, provided the block is not full.
|
||||
// The producer thread owns all the tail indices/pointers. The consumer
|
||||
// thread owns all the front indices/pointers. Both threads read each
|
||||
// other's variables, but only the owning thread updates them. E.g. After
|
||||
// the consumer reads the producer's tail, the tail may change before the
|
||||
// consumer is done dequeuing an object, but the consumer knows the tail
|
||||
// will never go backwards, only forwards.
|
||||
// If there is no room to enqueue an object, an additional block (of
|
||||
// equal size to the last block) is added. Blocks are never removed.
|
||||
|
||||
public:
|
||||
typedef T value_type;
|
||||
|
||||
// Constructs a queue that can hold at least `size` elements without further
|
||||
// allocations. If more than MAX_BLOCK_SIZE elements are requested,
|
||||
// then several blocks of MAX_BLOCK_SIZE each are reserved (including
|
||||
// at least one extra buffer block).
|
||||
AE_NO_TSAN explicit ReaderWriterQueue(size_t size = 15)
|
||||
#ifndef NDEBUG
|
||||
: enqueuing(false), dequeuing(false)
|
||||
#endif
|
||||
{
|
||||
assert(MAX_BLOCK_SIZE == ceilToPow2(MAX_BLOCK_SIZE) &&
|
||||
"MAX_BLOCK_SIZE must be a power of 2");
|
||||
assert(MAX_BLOCK_SIZE >= 2 && "MAX_BLOCK_SIZE must be at least 2");
|
||||
|
||||
Block* firstBlock = nullptr;
|
||||
|
||||
largestBlockSize =
|
||||
ceilToPow2(size + 1); // We need a spare slot to fit size elements in the block
|
||||
if (largestBlockSize > MAX_BLOCK_SIZE * 2) {
|
||||
// We need a spare block in case the producer is writing to a different block the
|
||||
// consumer is reading from, and wants to enqueue the maximum number of elements. We
|
||||
// also need a spare element in each block to avoid the ambiguity between front == tail
|
||||
// meaning "empty" and "full". So the effective number of slots that are guaranteed to
|
||||
// be usable at any time is the block size - 1 times the number of blocks - 1. Solving
|
||||
// for size and applying a ceiling to the division gives us (after simplifying):
|
||||
size_t initialBlockCount = (size + MAX_BLOCK_SIZE * 2 - 3) / (MAX_BLOCK_SIZE - 1);
|
||||
largestBlockSize = MAX_BLOCK_SIZE;
|
||||
Block* lastBlock = nullptr;
|
||||
for (size_t i = 0; i != initialBlockCount; ++i) {
|
||||
auto block = make_block(largestBlockSize);
|
||||
if (block == nullptr) {
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
if (firstBlock == nullptr) {
|
||||
firstBlock = block;
|
||||
} else {
|
||||
lastBlock->next = block;
|
||||
}
|
||||
lastBlock = block;
|
||||
block->next = firstBlock;
|
||||
}
|
||||
} else {
|
||||
firstBlock = make_block(largestBlockSize);
|
||||
if (firstBlock == nullptr) {
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
firstBlock->next = firstBlock;
|
||||
}
|
||||
frontBlock = firstBlock;
|
||||
tailBlock = firstBlock;
|
||||
|
||||
// Make sure the reader/writer threads will have the initialized memory setup above:
|
||||
fence(memory_order_sync);
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being moved. It's up to the user to synchronize this.
|
||||
AE_NO_TSAN ReaderWriterQueue(ReaderWriterQueue&& other)
|
||||
: frontBlock(other.frontBlock.load()), tailBlock(other.tailBlock.load()),
|
||||
largestBlockSize(other.largestBlockSize)
|
||||
#ifndef NDEBUG
|
||||
,
|
||||
enqueuing(false), dequeuing(false)
|
||||
#endif
|
||||
{
|
||||
other.largestBlockSize = 32;
|
||||
Block* b = other.make_block(other.largestBlockSize);
|
||||
if (b == nullptr) {
|
||||
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
|
||||
throw std::bad_alloc();
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
b->next = b;
|
||||
other.frontBlock = b;
|
||||
other.tailBlock = b;
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being moved. It's up to the user to synchronize this.
|
||||
ReaderWriterQueue& operator=(ReaderWriterQueue&& other) AE_NO_TSAN {
|
||||
Block* b = frontBlock.load();
|
||||
frontBlock = other.frontBlock.load();
|
||||
other.frontBlock = b;
|
||||
b = tailBlock.load();
|
||||
tailBlock = other.tailBlock.load();
|
||||
other.tailBlock = b;
|
||||
std::swap(largestBlockSize, other.largestBlockSize);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Note: The queue should not be accessed concurrently while it's
|
||||
// being deleted. It's up to the user to synchronize this.
|
||||
AE_NO_TSAN ~ReaderWriterQueue() {
|
||||
// Make sure we get the latest version of all variables from other CPUs:
|
||||
fence(memory_order_sync);
|
||||
|
||||
// Destroy any remaining objects in queue and free memory
|
||||
Block* frontBlock_ = frontBlock;
|
||||
Block* block = frontBlock_;
|
||||
do {
|
||||
Block* nextBlock = block->next;
|
||||
size_t blockFront = block->front;
|
||||
size_t blockTail = block->tail;
|
||||
|
||||
for (size_t i = blockFront; i != blockTail; i = (i + 1) & block->sizeMask) {
|
||||
auto element = reinterpret_cast<T*>(block->data + i * sizeof(T));
|
||||
element->~T();
|
||||
(void)element;
|
||||
}
|
||||
|
||||
auto rawBlock = block->rawThis;
|
||||
block->~Block();
|
||||
std::free(rawBlock);
|
||||
block = nextBlock;
|
||||
} while (block != frontBlock_);
|
||||
}
|
||||
|
||||
// Enqueues a copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T const& element) AE_NO_TSAN {
|
||||
return inner_enqueue<CannotAlloc>(element);
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T&& element) AE_NO_TSAN {
|
||||
return inner_enqueue<CannotAlloc>(std::forward<T>(element));
|
||||
}
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
// Like try_enqueue() but with emplace semantics (i.e. construct-in-place).
|
||||
template <typename... Args>
|
||||
AE_FORCEINLINE bool try_emplace(Args&&... args) AE_NO_TSAN {
|
||||
return inner_enqueue<CannotAlloc>(std::forward<Args>(args)...);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Enqueues a copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T const& element) AE_NO_TSAN {
|
||||
return inner_enqueue<CanAlloc>(element);
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T&& element) AE_NO_TSAN {
|
||||
return inner_enqueue<CanAlloc>(std::forward<T>(element));
|
||||
}
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
// Like enqueue() but with emplace semantics (i.e. construct-in-place).
|
||||
template <typename... Args>
|
||||
AE_FORCEINLINE bool emplace(Args&&... args) AE_NO_TSAN {
|
||||
return inner_enqueue<CanAlloc>(std::forward<Args>(args)...);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// returns false instead. If the queue has at least one element,
|
||||
// moves front to result using operator=, then returns true.
|
||||
template <typename U>
|
||||
bool try_dequeue(U& result) AE_NO_TSAN {
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
|
||||
// High-level pseudocode:
|
||||
// Remember where the tail block is
|
||||
// If the front block has an element in it, dequeue it
|
||||
// Else
|
||||
// If front block was the tail block when we entered the function, return false
|
||||
// Else advance to next block and dequeue the item there
|
||||
|
||||
// Note that we have to use the value of the tail block from before we check if the front
|
||||
// block is full or not, in case the front block is empty and then, before we check if the
|
||||
// tail block is at the front block or not, the producer fills up the front block *and
|
||||
// moves on*, which would make us skip a filled block. Seems unlikely, but was consistently
|
||||
// reproducible in practice.
|
||||
// In order to avoid overhead in the common case, though, we do a double-checked pattern
|
||||
// where we have the fast path if the front block is not empty, then read the tail block,
|
||||
// then re-read the front block and check if it's not empty again, then check if the tail
|
||||
// block has advanced.
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail ||
|
||||
blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
||||
fence(memory_order_acquire);
|
||||
|
||||
non_empty_front_block:
|
||||
// Front block not empty, dequeue from here
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
result = std::move(*element);
|
||||
element->~T();
|
||||
|
||||
blockFront = (blockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = blockFront;
|
||||
} else if (frontBlock_ != tailBlock.load()) {
|
||||
fence(memory_order_acquire);
|
||||
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail) {
|
||||
// Oh look, the front block isn't empty after all
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
// Front block is empty but there's another block ahead, advance to it
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
// Don't need an acquire fence here since next can only ever be set on the tailBlock,
|
||||
// and we're not the tailBlock, and we did an acquire earlier after reading tailBlock
|
||||
// which ensures next is up-to-date on this CPU in case we recently were at tailBlock.
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
// Since the tailBlock is only ever advanced after being written to,
|
||||
// we know there's for sure an element to dequeue on it
|
||||
assert(nextBlockFront != nextBlockTail);
|
||||
AE_UNUSED(nextBlockTail);
|
||||
|
||||
// We're done with this block, let the producer use it if it needs
|
||||
fence(memory_order_release); // Expose possibly pending changes to frontBlock->front
|
||||
// from last dequeue
|
||||
frontBlock = frontBlock_ = nextBlock;
|
||||
|
||||
compiler_fence(memory_order_release); // Not strictly needed
|
||||
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T));
|
||||
|
||||
result = std::move(*element);
|
||||
element->~T();
|
||||
|
||||
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = nextBlockFront;
|
||||
} else {
|
||||
// No elements in current block and no other block to advance to
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns a pointer to the front element in the queue (the one that
|
||||
// would be removed next by a call to `try_dequeue` or `pop`). If the
|
||||
// queue appears empty at the time the method is called, nullptr is
|
||||
// returned instead.
|
||||
// Must be called only from the consumer thread.
|
||||
T* peek() const AE_NO_TSAN {
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
// See try_dequeue() for reasoning
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail ||
|
||||
blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
||||
fence(memory_order_acquire);
|
||||
non_empty_front_block:
|
||||
return reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
} else if (frontBlock_ != tailBlock.load()) {
|
||||
fence(memory_order_acquire);
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail) {
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
assert(nextBlockFront != nextBlock->tail.load());
|
||||
return reinterpret_cast<T*>(nextBlock->data + nextBlockFront * sizeof(T));
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Removes the front element from the queue, if any, without returning it.
|
||||
// Returns true on success, or false if the queue appeared empty at the time
|
||||
// `pop` was called.
|
||||
bool pop() AE_NO_TSAN {
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->dequeuing);
|
||||
#endif
|
||||
// See try_dequeue() for reasoning
|
||||
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
size_t blockTail = frontBlock_->localTail;
|
||||
size_t blockFront = frontBlock_->front.load();
|
||||
|
||||
if (blockFront != blockTail ||
|
||||
blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
|
||||
fence(memory_order_acquire);
|
||||
|
||||
non_empty_front_block:
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T));
|
||||
element->~T();
|
||||
|
||||
blockFront = (blockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = blockFront;
|
||||
} else if (frontBlock_ != tailBlock.load()) {
|
||||
fence(memory_order_acquire);
|
||||
frontBlock_ = frontBlock.load();
|
||||
blockTail = frontBlock_->localTail = frontBlock_->tail.load();
|
||||
blockFront = frontBlock_->front.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
if (blockFront != blockTail) {
|
||||
goto non_empty_front_block;
|
||||
}
|
||||
|
||||
// Front block is empty but there's another block ahead, advance to it
|
||||
Block* nextBlock = frontBlock_->next;
|
||||
|
||||
size_t nextBlockFront = nextBlock->front.load();
|
||||
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
assert(nextBlockFront != nextBlockTail);
|
||||
AE_UNUSED(nextBlockTail);
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock = frontBlock_ = nextBlock;
|
||||
|
||||
compiler_fence(memory_order_release);
|
||||
|
||||
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T));
|
||||
element->~T();
|
||||
|
||||
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
frontBlock_->front = nextBlockFront;
|
||||
} else {
|
||||
// No elements in current block and no other block to advance to
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns the approximate number of items currently in the queue.
|
||||
// Safe to call from both the producer and consumer threads.
|
||||
inline size_t size_approx() const AE_NO_TSAN {
|
||||
size_t result = 0;
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
Block* block = frontBlock_;
|
||||
do {
|
||||
fence(memory_order_acquire);
|
||||
size_t blockFront = block->front.load();
|
||||
size_t blockTail = block->tail.load();
|
||||
result += (blockTail - blockFront) & block->sizeMask;
|
||||
block = block->next.load();
|
||||
} while (block != frontBlock_);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns the total number of items that could be enqueued without incurring
|
||||
// an allocation when this queue is empty.
|
||||
// Safe to call from both the producer and consumer threads.
|
||||
//
|
||||
// NOTE: The actual capacity during usage may be different depending on the consumer.
|
||||
// If the consumer is removing elements concurrently, the producer cannot add to
|
||||
// the block the consumer is removing from until it's completely empty, except in
|
||||
// the case where the producer was writing to the same block the consumer was
|
||||
// reading from the whole time.
|
||||
inline size_t max_capacity() const {
|
||||
size_t result = 0;
|
||||
Block* frontBlock_ = frontBlock.load();
|
||||
Block* block = frontBlock_;
|
||||
do {
|
||||
fence(memory_order_acquire);
|
||||
result += block->sizeMask;
|
||||
block = block->next.load();
|
||||
} while (block != frontBlock_);
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
enum AllocationMode { CanAlloc, CannotAlloc };
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
template <AllocationMode canAlloc, typename... Args>
|
||||
bool inner_enqueue(Args&&... args) AE_NO_TSAN
|
||||
#else
|
||||
template <AllocationMode canAlloc, typename U>
|
||||
bool inner_enqueue(U&& element) AE_NO_TSAN
|
||||
#endif
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
ReentrantGuard guard(this->enqueuing);
|
||||
#endif
|
||||
|
||||
// High-level pseudocode (assuming we're allowed to alloc a new block):
|
||||
// If room in tail block, add to tail
|
||||
// Else check next block
|
||||
// If next block is not the head block, enqueue on next block
|
||||
// Else create a new block and enqueue there
|
||||
// Advance tail to the block we just enqueued to
|
||||
|
||||
Block* tailBlock_ = tailBlock.load();
|
||||
size_t blockFront = tailBlock_->localFront;
|
||||
size_t blockTail = tailBlock_->tail.load();
|
||||
|
||||
size_t nextBlockTail = (blockTail + 1) & tailBlock_->sizeMask;
|
||||
if (nextBlockTail != blockFront ||
|
||||
nextBlockTail != (tailBlock_->localFront = tailBlock_->front.load())) {
|
||||
fence(memory_order_acquire);
|
||||
// This block has room for at least one more element
|
||||
char* location = tailBlock_->data + blockTail * sizeof(T);
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
new (location) T(std::forward<Args>(args)...);
|
||||
#else
|
||||
new (location) T(std::forward<U>(element));
|
||||
#endif
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock_->tail = nextBlockTail;
|
||||
} else {
|
||||
fence(memory_order_acquire);
|
||||
if (tailBlock_->next.load() != frontBlock) {
|
||||
// Note that the reason we can't advance to the frontBlock and start adding new
|
||||
// entries there is because if we did, then dequeue would stay in that block,
|
||||
// eventually reading the new values, instead of advancing to the next full block
|
||||
// (whose values were enqueued first and so should be consumed first).
|
||||
|
||||
fence(memory_order_acquire); // Ensure we get latest writes if we got the latest
|
||||
// frontBlock
|
||||
|
||||
// tailBlock is full, but there's a free block ahead, use it
|
||||
Block* tailBlockNext = tailBlock_->next.load();
|
||||
size_t nextBlockFront = tailBlockNext->localFront = tailBlockNext->front.load();
|
||||
nextBlockTail = tailBlockNext->tail.load();
|
||||
fence(memory_order_acquire);
|
||||
|
||||
// This block must be empty since it's not the head block and we
|
||||
// go through the blocks in a circle
|
||||
assert(nextBlockFront == nextBlockTail);
|
||||
tailBlockNext->localFront = nextBlockFront;
|
||||
|
||||
char* location = tailBlockNext->data + nextBlockTail * sizeof(T);
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
new (location) T(std::forward<Args>(args)...);
|
||||
#else
|
||||
new (location) T(std::forward<U>(element));
|
||||
#endif
|
||||
|
||||
tailBlockNext->tail = (nextBlockTail + 1) & tailBlockNext->sizeMask;
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock = tailBlockNext;
|
||||
} else if (canAlloc == CanAlloc) {
|
||||
// tailBlock is full and there's no free block ahead; create a new block
|
||||
auto newBlockSize =
|
||||
largestBlockSize >= MAX_BLOCK_SIZE ? largestBlockSize : largestBlockSize * 2;
|
||||
auto newBlock = make_block(newBlockSize);
|
||||
if (newBlock == nullptr) {
|
||||
// Could not allocate a block!
|
||||
return false;
|
||||
}
|
||||
largestBlockSize = newBlockSize;
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
new (newBlock->data) T(std::forward<Args>(args)...);
|
||||
#else
|
||||
new (newBlock->data) T(std::forward<U>(element));
|
||||
#endif
|
||||
assert(newBlock->front == 0);
|
||||
newBlock->tail = newBlock->localTail = 1;
|
||||
|
||||
newBlock->next = tailBlock_->next.load();
|
||||
tailBlock_->next = newBlock;
|
||||
|
||||
// Might be possible for the dequeue thread to see the new tailBlock->next
|
||||
// *without* seeing the new tailBlock value, but this is OK since it can't
|
||||
// advance to the next block until tailBlock is set anyway (because the only
|
||||
// case where it could try to read the next is if it's already at the tailBlock,
|
||||
// and it won't advance past tailBlock in any circumstance).
|
||||
|
||||
fence(memory_order_release);
|
||||
tailBlock = newBlock;
|
||||
} else if (canAlloc == CannotAlloc) {
|
||||
// Would have had to allocate a new block to enqueue, but not allowed
|
||||
return false;
|
||||
} else {
|
||||
assert(false && "Should be unreachable code");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Disable copying
|
||||
ReaderWriterQueue(ReaderWriterQueue const&) {}
|
||||
|
||||
// Disable assignment
|
||||
ReaderWriterQueue& operator=(ReaderWriterQueue const&) {}
|
||||
|
||||
AE_FORCEINLINE static size_t ceilToPow2(size_t x) {
|
||||
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
|
||||
--x;
|
||||
x |= x >> 1;
|
||||
x |= x >> 2;
|
||||
x |= x >> 4;
|
||||
for (size_t i = 1; i < sizeof(size_t); i <<= 1) {
|
||||
x |= x >> (i << 3);
|
||||
}
|
||||
++x;
|
||||
return x;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
static AE_FORCEINLINE char* align_for(char* ptr) AE_NO_TSAN {
|
||||
const std::size_t alignment = std::alignment_of<U>::value;
|
||||
return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment;
|
||||
}
|
||||
|
||||
private:
|
||||
#ifndef NDEBUG
|
||||
struct ReentrantGuard {
|
||||
AE_NO_TSAN ReentrantGuard(weak_atomic<bool>& _inSection) : inSection(_inSection) {
|
||||
assert(!inSection &&
|
||||
"Concurrent (or re-entrant) enqueue or dequeue operation detected (only one "
|
||||
"thread at a time may hold the producer or consumer role)");
|
||||
inSection = true;
|
||||
}
|
||||
|
||||
AE_NO_TSAN ~ReentrantGuard() {
|
||||
inSection = false;
|
||||
}
|
||||
|
||||
private:
|
||||
ReentrantGuard& operator=(ReentrantGuard const&);
|
||||
|
||||
private:
|
||||
weak_atomic<bool>& inSection;
|
||||
};
|
||||
#endif
|
||||
|
||||
struct Block {
|
||||
// Avoid false-sharing by putting highly contended variables on their own cache lines
|
||||
weak_atomic<size_t> front; // (Atomic) Elements are read from here
|
||||
size_t localTail; // An uncontended shadow copy of tail, owned by the consumer
|
||||
|
||||
char cachelineFiller0[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) -
|
||||
sizeof(size_t)];
|
||||
weak_atomic<size_t> tail; // (Atomic) Elements are enqueued here
|
||||
size_t localFront;
|
||||
|
||||
char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) -
|
||||
sizeof(size_t)]; // next isn't very contended, but we don't want it on
|
||||
// the same cache line as tail (which is)
|
||||
weak_atomic<Block*> next; // (Atomic)
|
||||
|
||||
char* data; // Contents (on heap) are aligned to T's alignment
|
||||
|
||||
const size_t sizeMask;
|
||||
|
||||
// size must be a power of two (and greater than 0)
|
||||
AE_NO_TSAN Block(size_t const& _size, char* _rawThis, char* _data)
|
||||
: front(0UL), localTail(0), tail(0UL), localFront(0), next(nullptr), data(_data),
|
||||
sizeMask(_size - 1), rawThis(_rawThis) {}
|
||||
|
||||
private:
|
||||
// C4512 - Assignment operator could not be generated
|
||||
Block& operator=(Block const&);
|
||||
|
||||
public:
|
||||
char* rawThis;
|
||||
};
|
||||
|
||||
static Block* make_block(size_t capacity) AE_NO_TSAN {
|
||||
// Allocate enough memory for the block itself, as well as all the elements it will contain
|
||||
auto size = sizeof(Block) + std::alignment_of<Block>::value - 1;
|
||||
size += sizeof(T) * capacity + std::alignment_of<T>::value - 1;
|
||||
auto newBlockRaw = static_cast<char*>(std::malloc(size));
|
||||
if (newBlockRaw == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto newBlockAligned = align_for<Block>(newBlockRaw);
|
||||
auto newBlockData = align_for<T>(newBlockAligned + sizeof(Block));
|
||||
return new (newBlockAligned) Block(capacity, newBlockRaw, newBlockData);
|
||||
}
|
||||
|
||||
private:
|
||||
weak_atomic<Block*> frontBlock; // (Atomic) Elements are dequeued from this block
|
||||
|
||||
char cachelineFiller[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<Block*>)];
|
||||
weak_atomic<Block*> tailBlock; // (Atomic) Elements are enqueued to this block
|
||||
|
||||
size_t largestBlockSize;
|
||||
|
||||
#ifndef NDEBUG
|
||||
weak_atomic<bool> enqueuing;
|
||||
mutable weak_atomic<bool> dequeuing;
|
||||
#endif
|
||||
};
|
||||
|
||||
// Like ReaderWriterQueue, but also providees blocking operations
|
||||
template <typename T, size_t MAX_BLOCK_SIZE = 512>
|
||||
class BlockingReaderWriterQueue {
|
||||
private:
|
||||
typedef ::Common::ReaderWriterQueue<T, MAX_BLOCK_SIZE> ReaderWriterQueue;
|
||||
|
||||
public:
|
||||
explicit BlockingReaderWriterQueue(size_t size = 15) AE_NO_TSAN
|
||||
: inner(size),
|
||||
sema(new spsc_sema::LightweightSemaphore()) {}
|
||||
|
||||
BlockingReaderWriterQueue(BlockingReaderWriterQueue&& other) AE_NO_TSAN
|
||||
: inner(std::move(other.inner)),
|
||||
sema(std::move(other.sema)) {}
|
||||
|
||||
BlockingReaderWriterQueue& operator=(BlockingReaderWriterQueue&& other) AE_NO_TSAN {
|
||||
std::swap(sema, other.sema);
|
||||
std::swap(inner, other.inner);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Enqueues a copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T const& element) AE_NO_TSAN {
|
||||
if (inner.try_enqueue(element)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element if there is room in the queue.
|
||||
// Returns true if the element was enqueued, false otherwise.
|
||||
// Does not allocate memory.
|
||||
AE_FORCEINLINE bool try_enqueue(T&& element) AE_NO_TSAN {
|
||||
if (inner.try_enqueue(std::forward<T>(element))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
// Like try_enqueue() but with emplace semantics (i.e. construct-in-place).
|
||||
template <typename... Args>
|
||||
AE_FORCEINLINE bool try_emplace(Args&&... args) AE_NO_TSAN {
|
||||
if (inner.try_emplace(std::forward<Args>(args)...)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Enqueues a copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T const& element) AE_NO_TSAN {
|
||||
if (inner.enqueue(element)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a moved copy of element on the queue.
|
||||
// Allocates an additional block of memory if needed.
|
||||
// Only fails (returns false) if memory allocation fails.
|
||||
AE_FORCEINLINE bool enqueue(T&& element) AE_NO_TSAN {
|
||||
if (inner.enqueue(std::forward<T>(element))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#if MOODYCAMEL_HAS_EMPLACE
|
||||
// Like enqueue() but with emplace semantics (i.e. construct-in-place).
|
||||
template <typename... Args>
|
||||
AE_FORCEINLINE bool emplace(Args&&... args) AE_NO_TSAN {
|
||||
if (inner.emplace(std::forward<Args>(args)...)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// returns false instead. If the queue has at least one element,
|
||||
// moves front to result using operator=, then returns true.
|
||||
template <typename U>
|
||||
bool try_dequeue(U& result) AE_NO_TSAN {
|
||||
if (sema->tryWait()) {
|
||||
bool success = inner.try_dequeue(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available, then dequeues it.
|
||||
template <typename U>
|
||||
void wait_dequeue(U& result) AE_NO_TSAN {
|
||||
while (!sema->wait())
|
||||
;
|
||||
bool success = inner.try_dequeue(result);
|
||||
AE_UNUSED(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
}
|
||||
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available up to the specified timeout,
|
||||
// then dequeues it and returns true, or returns false if the timeout
|
||||
// expires before an element can be dequeued.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
template <typename U>
|
||||
bool wait_dequeue_timed(U& result, std::int64_t timeout_usecs) AE_NO_TSAN {
|
||||
if (!sema->wait(timeout_usecs)) {
|
||||
return false;
|
||||
}
|
||||
bool success = inner.try_dequeue(result);
|
||||
AE_UNUSED(result);
|
||||
assert(success);
|
||||
AE_UNUSED(success);
|
||||
return true;
|
||||
}
|
||||
|
||||
#if __cplusplus > 199711L || _MSC_VER >= 1700
|
||||
// Attempts to dequeue an element; if the queue is empty,
|
||||
// waits until an element is available up to the specified timeout,
|
||||
// then dequeues it and returns true, or returns false if the timeout
|
||||
// expires before an element can be dequeued.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
template <typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(U& result,
|
||||
std::chrono::duration<Rep, Period> const& timeout) AE_NO_TSAN {
|
||||
return wait_dequeue_timed(
|
||||
result, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
#endif
|
||||
|
||||
// Returns a pointer to the front element in the queue (the one that
|
||||
// would be removed next by a call to `try_dequeue` or `pop`). If the
|
||||
// queue appears empty at the time the method is called, nullptr is
|
||||
// returned instead.
|
||||
// Must be called only from the consumer thread.
|
||||
AE_FORCEINLINE T* peek() const AE_NO_TSAN {
|
||||
return inner.peek();
|
||||
}
|
||||
|
||||
// Removes the front element from the queue, if any, without returning it.
|
||||
// Returns true on success, or false if the queue appeared empty at the time
|
||||
// `pop` was called.
|
||||
AE_FORCEINLINE bool pop() AE_NO_TSAN {
|
||||
if (sema->tryWait()) {
|
||||
bool result = inner.pop();
|
||||
assert(result);
|
||||
AE_UNUSED(result);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns the approximate number of items currently in the queue.
|
||||
// Safe to call from both the producer and consumer threads.
|
||||
AE_FORCEINLINE size_t size_approx() const AE_NO_TSAN {
|
||||
return sema->availableApprox();
|
||||
}
|
||||
|
||||
// Returns the total number of items that could be enqueued without incurring
|
||||
// an allocation when this queue is empty.
|
||||
// Safe to call from both the producer and consumer threads.
|
||||
//
|
||||
// NOTE: The actual capacity during usage may be different depending on the consumer.
|
||||
// If the consumer is removing elements concurrently, the producer cannot add to
|
||||
// the block the consumer is removing from until it's completely empty, except in
|
||||
// the case where the producer was writing to the same block the consumer was
|
||||
// reading from the whole time.
|
||||
AE_FORCEINLINE size_t max_capacity() const {
|
||||
return inner.max_capacity();
|
||||
}
|
||||
|
||||
private:
|
||||
// Disable copying & assignment
|
||||
BlockingReaderWriterQueue(BlockingReaderWriterQueue const&) {}
|
||||
BlockingReaderWriterQueue& operator=(BlockingReaderWriterQueue const&) {}
|
||||
|
||||
private:
|
||||
ReaderWriterQueue inner;
|
||||
std::unique_ptr<spsc_sema::LightweightSemaphore> sema;
|
||||
};
|
||||
|
||||
} // namespace Common
|
||||
|
||||
#ifdef AE_VCPP
|
||||
#pragma warning(pop)
|
||||
#endif
|
|
@ -62,7 +62,8 @@ void LogSettings() {
|
|||
log_setting("Renderer_UseAsynchronousShaders", values.use_asynchronous_shaders.GetValue());
|
||||
log_setting("Renderer_AnisotropicFilteringLevel", values.max_anisotropy.GetValue());
|
||||
log_setting("Audio_OutputEngine", values.sink_id.GetValue());
|
||||
log_setting("Audio_OutputDevice", values.audio_device_id.GetValue());
|
||||
log_setting("Audio_OutputDevice", values.audio_output_device_id.GetValue());
|
||||
log_setting("Audio_InputDevice", values.audio_input_device_id.GetValue());
|
||||
log_setting("DataStorage_UseVirtualSd", values.use_virtual_sd.GetValue());
|
||||
log_path("DataStorage_CacheDir", Common::FS::GetYuzuPath(Common::FS::YuzuPath::CacheDir));
|
||||
log_path("DataStorage_ConfigDir", Common::FS::GetYuzuPath(Common::FS::YuzuPath::ConfigDir));
|
||||
|
|
|
@ -370,10 +370,12 @@ struct TouchFromButtonMap {
|
|||
|
||||
struct Values {
|
||||
// Audio
|
||||
Setting<std::string> audio_device_id{"auto", "output_device"};
|
||||
Setting<std::string> sink_id{"auto", "output_engine"};
|
||||
Setting<std::string> audio_output_device_id{"auto", "output_device"};
|
||||
Setting<std::string> audio_input_device_id{"auto", "input_device"};
|
||||
Setting<bool> audio_muted{false, "audio_muted"};
|
||||
SwitchableSetting<u8, true> volume{100, 0, 100, "volume"};
|
||||
Setting<bool> dump_audio_commands{false, "dump_audio_commands"};
|
||||
|
||||
// Core
|
||||
SwitchableSetting<bool> use_multi_core{true, "use_multi_core"};
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue