Merge pull request #10086 from Morph1984/coretiming-ng-1

core_timing: Use CNTPCT as the guest CPU tick
This commit is contained in:
bunnei 2023-06-21 21:12:46 -07:00 committed by GitHub
commit e3122c5b46
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
31 changed files with 283 additions and 432 deletions

View file

@ -14,7 +14,6 @@ add_library(core STATIC
core.h
core_timing.cpp
core_timing.h
core_timing_util.h
cpu_manager.cpp
cpu_manager.h
crypto/aes_util.cpp

View file

@ -16,12 +16,11 @@
#include "common/microprofile.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hardware_properties.h"
namespace Core::Timing {
constexpr s64 MAX_SLICE_LENGTH = 4000;
constexpr s64 MAX_SLICE_LENGTH = 10000;
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
return std::make_shared<EventType>(std::move(callback), std::move(name));
@ -45,9 +44,7 @@ struct CoreTiming::Event {
}
};
CoreTiming::CoreTiming()
: cpu_clock{Common::CreateBestMatchingClock(Hardware::BASE_CLOCK_RATE, Hardware::CNTFREQ)},
event_clock{Common::CreateStandardWallClock(Hardware::BASE_CLOCK_RATE, Hardware::CNTFREQ)} {}
CoreTiming::CoreTiming() : clock{Common::CreateOptimalClock()} {}
CoreTiming::~CoreTiming() {
Reset();
@ -68,7 +65,7 @@ void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
on_thread_init = std::move(on_thread_init_);
event_fifo_id = 0;
shutting_down = false;
ticks = 0;
cpu_ticks = 0;
const auto empty_timed_callback = [](std::uintptr_t, u64, std::chrono::nanoseconds)
-> std::optional<std::chrono::nanoseconds> { return std::nullopt; };
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
@ -173,38 +170,30 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
}
void CoreTiming::AddTicks(u64 ticks_to_add) {
ticks += ticks_to_add;
downcount -= static_cast<s64>(ticks);
cpu_ticks += ticks_to_add;
downcount -= static_cast<s64>(cpu_ticks);
}
void CoreTiming::Idle() {
if (!event_queue.empty()) {
const u64 next_event_time = event_queue.front().time;
const u64 next_ticks = nsToCycles(std::chrono::nanoseconds(next_event_time)) + 10U;
if (next_ticks > ticks) {
ticks = next_ticks;
}
return;
}
ticks += 1000U;
cpu_ticks += 1000U;
}
void CoreTiming::ResetTicks() {
downcount = MAX_SLICE_LENGTH;
}
u64 CoreTiming::GetCPUTicks() const {
if (is_multicore) [[likely]] {
return cpu_clock->GetCPUCycles();
}
return ticks;
}
u64 CoreTiming::GetClockTicks() const {
if (is_multicore) [[likely]] {
return cpu_clock->GetClockCycles();
return clock->GetCNTPCT();
}
return CpuCyclesToClockCycles(ticks);
return Common::WallClock::CPUTickToCNTPCT(cpu_ticks);
}
u64 CoreTiming::GetGPUTicks() const {
if (is_multicore) [[likely]] {
return clock->GetGPUTick();
}
return Common::WallClock::CPUTickToGPUTick(cpu_ticks);
}
std::optional<s64> CoreTiming::Advance() {
@ -297,9 +286,7 @@ void CoreTiming::ThreadLoop() {
}
paused_set = true;
event_clock->Pause(true);
pause_event.Wait();
event_clock->Pause(false);
}
}
@ -315,25 +302,18 @@ void CoreTiming::Reset() {
has_started = false;
}
std::chrono::nanoseconds CoreTiming::GetCPUTimeNs() const {
if (is_multicore) [[likely]] {
return cpu_clock->GetTimeNS();
}
return CyclesToNs(ticks);
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
if (is_multicore) [[likely]] {
return event_clock->GetTimeNS();
return clock->GetTimeNS();
}
return CyclesToNs(ticks);
return std::chrono::nanoseconds{Common::WallClock::CPUTickToNS(cpu_ticks)};
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
if (is_multicore) [[likely]] {
return event_clock->GetTimeUS();
return clock->GetTimeUS();
}
return CyclesToUs(ticks);
return std::chrono::microseconds{Common::WallClock::CPUTickToUS(cpu_ticks)};
}
} // namespace Core::Timing

View file

@ -116,14 +116,11 @@ public:
return downcount;
}
/// Returns current time in emulated CPU cycles
u64 GetCPUTicks() const;
/// Returns current time in emulated in Clock cycles
/// Returns the current CNTPCT tick value.
u64 GetClockTicks() const;
/// Returns current time in nanoseconds.
std::chrono::nanoseconds GetCPUTimeNs() const;
/// Returns the current GPU tick value.
u64 GetGPUTicks() const;
/// Returns current time in microseconds.
std::chrono::microseconds GetGlobalTimeUs() const;
@ -142,8 +139,7 @@ private:
void Reset();
std::unique_ptr<Common::WallClock> cpu_clock;
std::unique_ptr<Common::WallClock> event_clock;
std::unique_ptr<Common::WallClock> clock;
s64 global_timer = 0;
@ -171,7 +167,7 @@ private:
s64 pause_end_time{};
/// Cycle timing
u64 ticks{};
u64 cpu_ticks{};
s64 downcount{};
};

View file

@ -1,58 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <chrono>
#include "common/common_types.h"
#include "core/hardware_properties.h"
namespace Core::Timing {
namespace detail {
constexpr u64 CNTFREQ_ADJUSTED = Hardware::CNTFREQ / 1000;
constexpr u64 BASE_CLOCK_RATE_ADJUSTED = Hardware::BASE_CLOCK_RATE / 1000;
} // namespace detail
[[nodiscard]] constexpr s64 msToCycles(std::chrono::milliseconds ms) {
return ms.count() * detail::BASE_CLOCK_RATE_ADJUSTED;
}
[[nodiscard]] constexpr s64 usToCycles(std::chrono::microseconds us) {
return us.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000;
}
[[nodiscard]] constexpr s64 nsToCycles(std::chrono::nanoseconds ns) {
return ns.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000000;
}
[[nodiscard]] constexpr u64 msToClockCycles(std::chrono::milliseconds ms) {
return static_cast<u64>(ms.count()) * detail::CNTFREQ_ADJUSTED;
}
[[nodiscard]] constexpr u64 usToClockCycles(std::chrono::microseconds us) {
return us.count() * detail::CNTFREQ_ADJUSTED / 1000;
}
[[nodiscard]] constexpr u64 nsToClockCycles(std::chrono::nanoseconds ns) {
return ns.count() * detail::CNTFREQ_ADJUSTED / 1000000;
}
[[nodiscard]] constexpr u64 CpuCyclesToClockCycles(u64 ticks) {
return ticks * detail::CNTFREQ_ADJUSTED / detail::BASE_CLOCK_RATE_ADJUSTED;
}
[[nodiscard]] constexpr std::chrono::milliseconds CyclesToMs(s64 cycles) {
return std::chrono::milliseconds(cycles / detail::BASE_CLOCK_RATE_ADJUSTED);
}
[[nodiscard]] constexpr std::chrono::nanoseconds CyclesToNs(s64 cycles) {
return std::chrono::nanoseconds(cycles * 1000000 / detail::BASE_CLOCK_RATE_ADJUSTED);
}
[[nodiscard]] constexpr std::chrono::microseconds CyclesToUs(s64 cycles) {
return std::chrono::microseconds(cycles * 1000 / detail::BASE_CLOCK_RATE_ADJUSTED);
}
} // namespace Core::Timing

View file

@ -184,7 +184,8 @@ u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
prev_highest_thread != highest_thread) [[likely]] {
if (prev_highest_thread != nullptr) [[likely]] {
IncrementScheduledCount(prev_highest_thread);
prev_highest_thread->SetLastScheduledTick(m_kernel.System().CoreTiming().GetCPUTicks());
prev_highest_thread->SetLastScheduledTick(
m_kernel.System().CoreTiming().GetClockTicks());
}
if (m_state.should_count_idle) {
if (highest_thread != nullptr) [[likely]] {
@ -351,7 +352,7 @@ void KScheduler::SwitchThread(KThread* next_thread) {
// Update the CPU time tracking variables.
const s64 prev_tick = m_last_context_switch_time;
const s64 cur_tick = m_kernel.System().CoreTiming().GetCPUTicks();
const s64 cur_tick = m_kernel.System().CoreTiming().GetClockTicks();
const s64 tick_diff = cur_tick - prev_tick;
cur_thread->AddCpuTime(m_core_id, tick_diff);
if (cur_process != nullptr) {

View file

@ -199,9 +199,9 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
const u64 thread_ticks = current_thread->GetCpuTime();
out_ticks = thread_ticks + (core_timing.GetCPUTicks() - prev_ctx_ticks);
out_ticks = thread_ticks + (core_timing.GetClockTicks() - prev_ctx_ticks);
} else if (same_thread && info_sub_id == system.Kernel().CurrentPhysicalCoreIndex()) {
out_ticks = core_timing.GetCPUTicks() - prev_ctx_ticks;
out_ticks = core_timing.GetClockTicks() - prev_ctx_ticks;
}
*result = out_ticks;

View file

@ -12,16 +12,8 @@ namespace Kernel::Svc {
int64_t GetSystemTick(Core::System& system) {
LOG_TRACE(Kernel_SVC, "called");
auto& core_timing = system.CoreTiming();
// Returns the value of cntpct_el0 (https://switchbrew.org/wiki/SVC#svcGetSystemTick)
const u64 result{core_timing.GetClockTicks()};
if (!system.Kernel().IsMulticore()) {
core_timing.AddTicks(400U);
}
return static_cast<int64_t>(result);
return static_cast<int64_t>(system.CoreTiming().GetClockTicks());
}
int64_t GetSystemTick64(Core::System& system) {

View file

@ -5,7 +5,6 @@
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hid/hid_types.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_readable_event.h"

View file

@ -51,8 +51,8 @@ void nvdisp_disp0::flip(u32 buffer_handle, u32 offset, android::PixelFormat form
stride, format, transform, crop_rect};
system.GPU().RequestSwapBuffers(&framebuffer, fences, num_fences);
system.GetPerfStats().EndSystemFrame();
system.SpeedLimiter().DoSpeedLimiting(system.CoreTiming().GetGlobalTimeUs());
system.GetPerfStats().EndSystemFrame();
system.GetPerfStats().BeginSystemFrame();
}

View file

@ -70,7 +70,8 @@ Nvnflinger::Nvnflinger(Core::System& system_, HosBinderDriverServer& hos_binder_
[this](std::uintptr_t, s64 time,
std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> {
vsync_signal.store(true);
vsync_signal.notify_all();
{ const auto lock_guard = Lock(); }
vsync_signal.notify_one();
return std::chrono::nanoseconds(GetNextTicks());
});

View file

@ -3,6 +3,8 @@
#pragma once
#include <ratio>
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/uuid.h"
@ -74,18 +76,19 @@ static_assert(std::is_trivially_copyable_v<ContinuousAdjustmentTimePoint>,
/// https://switchbrew.org/wiki/Glue_services#TimeSpanType
struct TimeSpanType {
s64 nanoseconds{};
static constexpr s64 ns_per_second{1000000000ULL};
s64 ToSeconds() const {
return nanoseconds / ns_per_second;
return nanoseconds / std::nano::den;
}
static TimeSpanType FromSeconds(s64 seconds) {
return {seconds * ns_per_second};
return {seconds * std::nano::den};
}
static TimeSpanType FromTicks(u64 ticks, u64 frequency) {
return FromSeconds(static_cast<s64>(ticks) / static_cast<s64>(frequency));
template <u64 Frequency>
static TimeSpanType FromTicks(u64 ticks) {
using TicksToNSRatio = std::ratio<std::nano::den, Frequency>;
return {static_cast<s64>(ticks * TicksToNSRatio::num / TicksToNSRatio::den)};
}
};
static_assert(sizeof(TimeSpanType) == 8, "TimeSpanType is incorrect size");

View file

@ -10,7 +10,7 @@ namespace Service::Time::Clock {
TimeSpanType StandardSteadyClockCore::GetCurrentRawTimePoint(Core::System& system) {
const TimeSpanType ticks_time_span{
TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
TimeSpanType::FromTicks<Core::Hardware::CNTFREQ>(system.CoreTiming().GetClockTicks())};
TimeSpanType raw_time_point{setup_value.nanoseconds + ticks_time_span.nanoseconds};
if (raw_time_point.nanoseconds < cached_raw_time_point.nanoseconds) {

View file

@ -10,7 +10,7 @@ namespace Service::Time::Clock {
SteadyClockTimePoint TickBasedSteadyClockCore::GetTimePoint(Core::System& system) {
const TimeSpanType ticks_time_span{
TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
TimeSpanType::FromTicks<Core::Hardware::CNTFREQ>(system.CoreTiming().GetClockTicks())};
return {ticks_time_span.ToSeconds(), GetClockSourceId()};
}

View file

@ -240,8 +240,8 @@ void Module::Interface::CalculateMonotonicSystemClockBaseTimePoint(HLERequestCon
const auto current_time_point{steady_clock_core.GetCurrentTimePoint(system)};
if (current_time_point.clock_source_id == context.steady_time_point.clock_source_id) {
const auto ticks{Clock::TimeSpanType::FromTicks(system.CoreTiming().GetClockTicks(),
Core::Hardware::CNTFREQ)};
const auto ticks{Clock::TimeSpanType::FromTicks<Core::Hardware::CNTFREQ>(
system.CoreTiming().GetClockTicks())};
const s64 base_time_point{context.offset + current_time_point.time_point -
ticks.ToSeconds()};
IPC::ResponseBuilder rb{ctx, (sizeof(s64) / 4) + 2};

View file

@ -21,8 +21,9 @@ SharedMemory::~SharedMemory() = default;
void SharedMemory::SetupStandardSteadyClock(const Common::UUID& clock_source_id,
Clock::TimeSpanType current_time_point) {
const Clock::TimeSpanType ticks_time_span{Clock::TimeSpanType::FromTicks(
system.CoreTiming().GetClockTicks(), Core::Hardware::CNTFREQ)};
const Clock::TimeSpanType ticks_time_span{
Clock::TimeSpanType::FromTicks<Core::Hardware::CNTFREQ>(
system.CoreTiming().GetClockTicks())};
const Clock::SteadyClockContext context{
static_cast<u64>(current_time_point.nanoseconds - ticks_time_span.nanoseconds),
clock_source_id};