NVDRV: Remake ASGPU

This commit is contained in:
Fernando Sahmkow 2021-11-14 20:55:52 +01:00
parent c6ea0c650e
commit feb49c822d
8 changed files with 882 additions and 239 deletions

View file

@ -6,6 +6,7 @@
#include <cstring>
#include <utility>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
@ -21,8 +22,8 @@
namespace Service::Nvidia::Devices {
nvhost_as_gpu::nvhost_as_gpu(Core::System& system_, Module& module_, NvCore::Container& core)
: nvdevice{system_}, module{module_}, container{core}, nvmap{core.GetNvMapFile()},
gmmu{std::make_shared<Tegra::MemoryManager>(system)} {}
: nvdevice{system_}, module{module_}, container{core}, nvmap{core.GetNvMapFile()}, vm{},
gmmu{} {}
nvhost_as_gpu::~nvhost_as_gpu() = default;
NvResult nvhost_as_gpu::Ioctl1(DeviceFD fd, Ioctl command, const std::vector<u8>& input,
@ -89,12 +90,49 @@ NvResult nvhost_as_gpu::AllocAsEx(const std::vector<u8>& input, std::vector<u8>&
IoctlAllocAsEx params{};
std::memcpy(&params, input.data(), input.size());
LOG_WARNING(Service_NVDRV, "(STUBBED) called, big_page_size=0x{:X}", params.big_page_size);
if (params.big_page_size == 0) {
params.big_page_size = DEFAULT_BIG_PAGE_SIZE;
LOG_DEBUG(Service_NVDRV, "called, big_page_size=0x{:X}", params.big_page_size);
std::scoped_lock lock(mutex);
if (vm.initialised) {
UNREACHABLE_MSG("Cannot initialise an address space twice!");
return NvResult::InvalidState;
}
big_page_size = params.big_page_size;
if (params.big_page_size) {
if (!std::has_single_bit(params.big_page_size)) {
LOG_ERROR(Service_NVDRV, "Non power-of-2 big page size: 0x{:X}!", params.big_page_size);
return NvResult::BadValue;
}
if (!(params.big_page_size & VM::SUPPORTED_BIG_PAGE_SIZES)) {
LOG_ERROR(Service_NVDRV, "Unsupported big page size: 0x{:X}!", params.big_page_size);
return NvResult::BadValue;
}
vm.big_page_size = params.big_page_size;
vm.big_page_size_bits = static_cast<u32>(std::countr_zero(params.big_page_size));
vm.va_range_start = params.big_page_size << VM::VA_START_SHIFT;
}
// If this is unspecified then default values should be used
if (params.va_range_start) {
vm.va_range_start = params.va_range_start;
vm.va_range_split = params.va_range_split;
vm.va_range_end = params.va_range_end;
}
const u64 start_pages{vm.va_range_start >> VM::PAGE_SIZE_BITS};
const u64 end_pages{vm.va_range_split >> VM::PAGE_SIZE_BITS};
vm.small_page_allocator = std::make_shared<VM::Allocator>(start_pages, end_pages);
const u64 start_big_pages{vm.va_range_split >> vm.big_page_size_bits};
const u64 end_big_pages{(vm.va_range_end - vm.va_range_split) >> vm.big_page_size_bits};
vm.big_page_allocator = std::make_unique<VM::Allocator>(start_big_pages, end_big_pages);
gmmu = std::make_shared<Tegra::MemoryManager>(system, 40, VM::PAGE_SIZE_BITS);
vm.initialised = true;
return NvResult::Success;
}
@ -106,21 +144,73 @@ NvResult nvhost_as_gpu::AllocateSpace(const std::vector<u8>& input, std::vector<
LOG_DEBUG(Service_NVDRV, "called, pages={:X}, page_size={:X}, flags={:X}", params.pages,
params.page_size, params.flags);
const auto size{static_cast<u64>(params.pages) * static_cast<u64>(params.page_size)};
if ((params.flags & AddressSpaceFlags::FixedOffset) != AddressSpaceFlags::None) {
params.offset = *(gmmu->AllocateFixed(params.offset, size));
} else {
params.offset = gmmu->Allocate(size, params.align);
std::scoped_lock lock(mutex);
if (!vm.initialised) {
return NvResult::BadValue;
}
auto result = NvResult::Success;
if (!params.offset) {
LOG_CRITICAL(Service_NVDRV, "allocation failed for size {}", size);
result = NvResult::InsufficientMemory;
if (params.page_size != VM::YUZU_PAGESIZE && params.page_size != vm.big_page_size) {
return NvResult::BadValue;
}
if (params.page_size != vm.big_page_size &&
((params.flags & MappingFlags::Sparse) != MappingFlags::None)) {
UNIMPLEMENTED_MSG("Sparse small pages are not implemented!");
return NvResult::NotImplemented;
}
const u32 page_size_bits{params.page_size == VM::YUZU_PAGESIZE ? VM::PAGE_SIZE_BITS
: vm.big_page_size_bits};
auto& allocator{params.page_size == VM::YUZU_PAGESIZE ? *vm.small_page_allocator
: *vm.big_page_allocator};
if ((params.flags & MappingFlags::Fixed) != MappingFlags::None) {
allocator.AllocateFixed(static_cast<u32>(params.offset >> page_size_bits), params.pages);
} else {
params.offset = static_cast<u64>(allocator.Allocate(params.pages)) << page_size_bits;
if (!params.offset) {
UNREACHABLE_MSG("Failed to allocate free space in the GPU AS!");
return NvResult::InsufficientMemory;
}
}
u64 size{static_cast<u64>(params.pages) * params.page_size};
if ((params.flags & MappingFlags::Sparse) != MappingFlags::None) {
gmmu->MapSparse(params.offset, size);
}
allocation_map[params.offset] = {
.size = size,
.page_size = params.page_size,
.sparse = (params.flags & MappingFlags::Sparse) != MappingFlags::None,
};
std::memcpy(output.data(), &params, output.size());
return result;
return NvResult::Success;
}
void nvhost_as_gpu::FreeMappingLocked(u64 offset) {
auto mapping{mapping_map.at(offset)};
if (!mapping->fixed) {
auto& allocator{mapping->big_page ? *vm.big_page_allocator : *vm.small_page_allocator};
u32 page_size_bits{mapping->big_page ? vm.big_page_size_bits : VM::PAGE_SIZE_BITS};
allocator.Free(static_cast<u32>(mapping->offset >> page_size_bits),
static_cast<u32>(mapping->size >> page_size_bits));
}
// Sparse mappings shouldn't be fully unmapped, just returned to their sparse state
// Only FreeSpace can unmap them fully
if (mapping->sparse_alloc)
gmmu->MapSparse(offset, mapping->size);
else
gmmu->Unmap(offset, mapping->size);
mapping_map.erase(offset);
}
NvResult nvhost_as_gpu::FreeSpace(const std::vector<u8>& input, std::vector<u8>& output) {
@ -130,7 +220,40 @@ NvResult nvhost_as_gpu::FreeSpace(const std::vector<u8>& input, std::vector<u8>&
LOG_DEBUG(Service_NVDRV, "called, offset={:X}, pages={:X}, page_size={:X}", params.offset,
params.pages, params.page_size);
gmmu->Unmap(params.offset, static_cast<std::size_t>(params.pages) * params.page_size);
std::scoped_lock lock(mutex);
if (!vm.initialised) {
return NvResult::BadValue;
}
try {
auto allocation{allocation_map[params.offset]};
if (allocation.page_size != params.page_size ||
allocation.size != (static_cast<u64>(params.pages) * params.page_size)) {
return NvResult::BadValue;
}
for (const auto& mapping : allocation.mappings) {
FreeMappingLocked(mapping->offset);
}
// Unset sparse flag if required
if (allocation.sparse) {
gmmu->Unmap(params.offset, allocation.size);
}
auto& allocator{params.page_size == VM::YUZU_PAGESIZE ? *vm.small_page_allocator
: *vm.big_page_allocator};
u32 page_size_bits{params.page_size == VM::YUZU_PAGESIZE ? VM::PAGE_SIZE_BITS
: vm.big_page_size_bits};
allocator.Free(static_cast<u32>(params.offset >> page_size_bits),
static_cast<u32>(allocation.size >> page_size_bits));
allocation_map.erase(params.offset);
} catch ([[maybe_unused]] const std::out_of_range& e) {
return NvResult::BadValue;
}
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
@ -141,43 +264,51 @@ NvResult nvhost_as_gpu::Remap(const std::vector<u8>& input, std::vector<u8>& out
LOG_DEBUG(Service_NVDRV, "called, num_entries=0x{:X}", num_entries);
auto result = NvResult::Success;
std::vector<IoctlRemapEntry> entries(num_entries);
std::memcpy(entries.data(), input.data(), input.size());
std::scoped_lock lock(mutex);
if (!vm.initialised) {
return NvResult::BadValue;
}
for (const auto& entry : entries) {
LOG_DEBUG(Service_NVDRV, "remap entry, offset=0x{:X} handle=0x{:X} pages=0x{:X}",
entry.offset, entry.nvmap_handle, entry.pages);
GPUVAddr virtual_address{static_cast<u64>(entry.as_offset_big_pages)
<< vm.big_page_size_bits};
u64 size{static_cast<u64>(entry.big_pages) << vm.big_page_size_bits};
if (entry.nvmap_handle == 0) {
// If nvmap handle is null, we should unmap instead.
const auto offset{static_cast<GPUVAddr>(entry.offset) << 0x10};
const auto size{static_cast<u64>(entry.pages) << 0x10};
gmmu->Unmap(offset, size);
continue;
auto alloc{allocation_map.upper_bound(virtual_address)};
if (alloc-- == allocation_map.begin() ||
(virtual_address - alloc->first) + size > alloc->second.size) {
LOG_WARNING(Service_NVDRV, "Cannot remap into an unallocated region!");
return NvResult::BadValue;
}
const auto object{nvmap.GetHandle(entry.nvmap_handle)};
if (!object) {
LOG_CRITICAL(Service_NVDRV, "invalid nvmap_handle={:X}", entry.nvmap_handle);
result = NvResult::InvalidState;
break;
if (!alloc->second.sparse) {
LOG_WARNING(Service_NVDRV, "Cannot remap a non-sparse mapping!");
return NvResult::BadValue;
}
const auto offset{static_cast<GPUVAddr>(entry.offset) << 0x10};
const auto size{static_cast<u64>(entry.pages) << 0x10};
const auto map_offset{static_cast<u64>(entry.map_offset) << 0x10};
const auto addr{gmmu->Map(object->address + map_offset, offset, size)};
if (!entry.handle) {
gmmu->MapSparse(virtual_address, size);
} else {
auto handle{nvmap.GetHandle(entry.handle)};
if (!handle) {
return NvResult::BadValue;
}
if (!addr) {
LOG_CRITICAL(Service_NVDRV, "map returned an invalid address!");
result = NvResult::InvalidState;
break;
VAddr cpu_address{static_cast<VAddr>(
handle->address +
(static_cast<u64>(entry.handle_offset_big_pages) << vm.big_page_size_bits))};
gmmu->Map(virtual_address, cpu_address, size);
}
}
std::memcpy(output.data(), entries.data(), output.size());
return result;
return NvResult::Success;
}
NvResult nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8>& output) {
@ -187,75 +318,96 @@ NvResult nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8
LOG_DEBUG(Service_NVDRV,
"called, flags={:X}, nvmap_handle={:X}, buffer_offset={}, mapping_size={}"
", offset={}",
params.flags, params.nvmap_handle, params.buffer_offset, params.mapping_size,
params.flags, params.handle, params.buffer_offset, params.mapping_size,
params.offset);
if ((params.flags & AddressSpaceFlags::Remap) != AddressSpaceFlags::None) {
if (const auto buffer_map{FindBufferMap(params.offset)}; buffer_map) {
const auto cpu_addr{static_cast<VAddr>(buffer_map->CpuAddr() + params.buffer_offset)};
const auto gpu_addr{static_cast<GPUVAddr>(params.offset + params.buffer_offset)};
std::scoped_lock lock(mutex);
if (!gmmu->Map(cpu_addr, gpu_addr, params.mapping_size)) {
LOG_CRITICAL(Service_NVDRV,
"remap failed, flags={:X}, nvmap_handle={:X}, buffer_offset={}, "
"mapping_size = {}, offset={}",
params.flags, params.nvmap_handle, params.buffer_offset,
params.mapping_size, params.offset);
if (!vm.initialised) {
return NvResult::BadValue;
}
std::memcpy(output.data(), &params, output.size());
return NvResult::InvalidState;
// Remaps a subregion of an existing mapping to a different PA
if ((params.flags & MappingFlags::Remap) != MappingFlags::None) {
try {
auto mapping{mapping_map.at(params.offset)};
if (mapping->size < params.mapping_size) {
LOG_WARNING(Service_NVDRV,
"Cannot remap a partially mapped GPU address space region: 0x{:X}",
params.offset);
return NvResult::BadValue;
}
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
} else {
LOG_CRITICAL(Service_NVDRV, "address not mapped offset={}", params.offset);
u64 gpu_address{static_cast<u64>(params.offset + params.buffer_offset)};
VAddr cpu_address{mapping->ptr + params.buffer_offset};
std::memcpy(output.data(), &params, output.size());
return NvResult::InvalidState;
gmmu->Map(gpu_address, cpu_address, params.mapping_size);
return NvResult::Success;
} catch ([[maybe_unused]] const std::out_of_range& e) {
LOG_WARNING(Service_NVDRV, "Cannot remap an unmapped GPU address space region: 0x{:X}",
params.offset);
return NvResult::BadValue;
}
}
const auto object{nvmap.GetHandle(params.nvmap_handle)};
if (!object) {
LOG_CRITICAL(Service_NVDRV, "invalid nvmap_handle={:X}", params.nvmap_handle);
std::memcpy(output.data(), &params, output.size());
return NvResult::InvalidState;
auto handle{nvmap.GetHandle(params.handle)};
if (!handle) {
return NvResult::BadValue;
}
// The real nvservices doesn't make a distinction between handles and ids, and
// object can only have one handle and it will be the same as its id. Assert that this is the
// case to prevent unexpected behavior.
ASSERT(object->id == params.nvmap_handle);
VAddr cpu_address{static_cast<VAddr>(handle->address + params.buffer_offset)};
u64 size{params.mapping_size ? params.mapping_size : handle->orig_size};
u64 page_size{params.page_size};
if (!page_size) {
page_size = object->align;
}
if ((params.flags & MappingFlags::Fixed) != MappingFlags::None) {
auto alloc{allocation_map.upper_bound(params.offset)};
const auto physical_address{object->address + params.buffer_offset};
u64 size{params.mapping_size};
if (!size) {
size = object->size;
}
if (alloc-- == allocation_map.begin() ||
(params.offset - alloc->first) + size > alloc->second.size) {
UNREACHABLE_MSG("Cannot perform a fixed mapping into an unallocated region!");
return NvResult::BadValue;
}
const bool is_alloc{(params.flags & AddressSpaceFlags::FixedOffset) == AddressSpaceFlags::None};
if (is_alloc) {
params.offset = gmmu->MapAllocate(physical_address, size, page_size);
gmmu->Map(params.offset, cpu_address, size);
auto mapping{std::make_shared<Mapping>(cpu_address, params.offset, size, true, false,
alloc->second.sparse)};
alloc->second.mappings.push_back(mapping);
mapping_map[params.offset] = mapping;
} else {
params.offset = gmmu->Map(physical_address, params.offset, size);
}
bool big_page{[&]() {
if (Common::IsAligned(handle->align, vm.big_page_size))
return true;
else if (Common::IsAligned(handle->align, VM::YUZU_PAGESIZE))
return false;
else {
UNREACHABLE();
return false;
}
}()};
auto result = NvResult::Success;
if (!params.offset) {
LOG_CRITICAL(Service_NVDRV, "failed to map size={}", size);
result = NvResult::InvalidState;
} else {
AddBufferMap(params.offset, size, physical_address, is_alloc);
auto& allocator{big_page ? *vm.big_page_allocator : *vm.small_page_allocator};
u32 page_size{big_page ? vm.big_page_size : VM::YUZU_PAGESIZE};
u32 page_size_bits{big_page ? vm.big_page_size_bits : VM::PAGE_SIZE_BITS};
params.offset = static_cast<u64>(allocator.Allocate(
static_cast<u32>(Common::AlignUp(size, page_size) >> page_size_bits)))
<< page_size_bits;
if (!params.offset) {
UNREACHABLE_MSG("Failed to allocate free space in the GPU AS!");
return NvResult::InsufficientMemory;
}
gmmu->Map(params.offset, cpu_address, size);
auto mapping{
std::make_shared<Mapping>(cpu_address, params.offset, size, false, big_page, false)};
mapping_map[params.offset] = mapping;
}
std::memcpy(output.data(), &params, output.size());
return result;
return NvResult::Success;
}
NvResult nvhost_as_gpu::UnmapBuffer(const std::vector<u8>& input, std::vector<u8>& output) {
@ -264,13 +416,36 @@ NvResult nvhost_as_gpu::UnmapBuffer(const std::vector<u8>& input, std::vector<u8
LOG_DEBUG(Service_NVDRV, "called, offset=0x{:X}", params.offset);
if (const auto size{RemoveBufferMap(params.offset)}; size) {
gmmu->Unmap(params.offset, *size);
} else {
LOG_ERROR(Service_NVDRV, "invalid offset=0x{:X}", params.offset);
std::scoped_lock lock(mutex);
if (!vm.initialised) {
return NvResult::BadValue;
}
try {
auto mapping{mapping_map.at(params.offset)};
if (!mapping->fixed) {
auto& allocator{mapping->big_page ? *vm.big_page_allocator : *vm.small_page_allocator};
u32 page_size_bits{mapping->big_page ? vm.big_page_size_bits : VM::PAGE_SIZE_BITS};
allocator.Free(static_cast<u32>(mapping->offset >> page_size_bits),
static_cast<u32>(mapping->size >> page_size_bits));
}
// Sparse mappings shouldn't be fully unmapped, just returned to their sparse state
// Only FreeSpace can unmap them fully
if (mapping->sparse_alloc) {
gmmu->MapSparse(params.offset, mapping->size);
} else {
gmmu->Unmap(params.offset, mapping->size);
}
mapping_map.erase(params.offset);
} catch ([[maybe_unused]] const std::out_of_range& e) {
LOG_WARNING(Service_NVDRV, "Couldn't find region to unmap at 0x{:X}", params.offset);
}
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
@ -284,28 +459,37 @@ NvResult nvhost_as_gpu::BindChannel(const std::vector<u8>& input, std::vector<u8
return NvResult::Success;
}
void nvhost_as_gpu::GetVARegionsImpl(IoctlGetVaRegions& params) {
params.buf_size = 2 * sizeof(VaRegion);
params.regions = std::array<VaRegion, 2>{
VaRegion{
.offset = vm.small_page_allocator->vaStart << VM::PAGE_SIZE_BITS,
.page_size = VM::YUZU_PAGESIZE,
.pages = vm.small_page_allocator->vaLimit - vm.small_page_allocator->vaStart,
},
VaRegion{
.offset = vm.big_page_allocator->vaStart << vm.big_page_size_bits,
.page_size = vm.big_page_size,
.pages = vm.big_page_allocator->vaLimit - vm.big_page_allocator->vaStart,
},
};
}
NvResult nvhost_as_gpu::GetVARegions(const std::vector<u8>& input, std::vector<u8>& output) {
IoctlGetVaRegions params{};
std::memcpy(&params, input.data(), input.size());
LOG_WARNING(Service_NVDRV, "(STUBBED) called, buf_addr={:X}, buf_size={:X}", params.buf_addr,
params.buf_size);
LOG_DEBUG(Service_NVDRV, "called, buf_addr={:X}, buf_size={:X}", params.buf_addr,
params.buf_size);
params.buf_size = 0x30;
std::scoped_lock lock(mutex);
params.small = IoctlVaRegion{
.offset = 0x04000000,
.page_size = DEFAULT_SMALL_PAGE_SIZE,
.pages = 0x3fbfff,
};
if (!vm.initialised) {
return NvResult::BadValue;
}
params.big = IoctlVaRegion{
.offset = 0x04000000,
.page_size = big_page_size,
.pages = 0x1bffff,
};
// TODO(ogniK): This probably can stay stubbed but should add support way way later
GetVARegionsImpl(params);
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
@ -316,64 +500,24 @@ NvResult nvhost_as_gpu::GetVARegions(const std::vector<u8>& input, std::vector<u
IoctlGetVaRegions params{};
std::memcpy(&params, input.data(), input.size());
LOG_WARNING(Service_NVDRV, "(STUBBED) called, buf_addr={:X}, buf_size={:X}", params.buf_addr,
params.buf_size);
LOG_DEBUG(Service_NVDRV, "called, buf_addr={:X}, buf_size={:X}", params.buf_addr,
params.buf_size);
params.buf_size = 0x30;
std::scoped_lock lock(mutex);
params.small = IoctlVaRegion{
.offset = 0x04000000,
.page_size = 0x1000,
.pages = 0x3fbfff,
};
if (!vm.initialised) {
return NvResult::BadValue;
}
params.big = IoctlVaRegion{
.offset = 0x04000000,
.page_size = big_page_size,
.pages = 0x1bffff,
};
// TODO(ogniK): This probably can stay stubbed but should add support way way later
GetVARegionsImpl(params);
std::memcpy(output.data(), &params, output.size());
std::memcpy(inline_output.data(), &params.small, sizeof(IoctlVaRegion));
std::memcpy(inline_output.data() + sizeof(IoctlVaRegion), &params.big, sizeof(IoctlVaRegion));
std::memcpy(inline_output.data(), &params.regions[0], sizeof(VaRegion));
std::memcpy(inline_output.data() + sizeof(VaRegion), &params.regions[1], sizeof(VaRegion));
return NvResult::Success;
}
std::optional<nvhost_as_gpu::BufferMap> nvhost_as_gpu::FindBufferMap(GPUVAddr gpu_addr) const {
const auto end{buffer_mappings.upper_bound(gpu_addr)};
for (auto iter{buffer_mappings.begin()}; iter != end; ++iter) {
if (gpu_addr >= iter->second.StartAddr() && gpu_addr < iter->second.EndAddr()) {
return iter->second;
}
}
return std::nullopt;
}
void nvhost_as_gpu::AddBufferMap(GPUVAddr gpu_addr, std::size_t size, VAddr cpu_addr,
bool is_allocated) {
buffer_mappings[gpu_addr] = {gpu_addr, size, cpu_addr, is_allocated};
}
std::optional<std::size_t> nvhost_as_gpu::RemoveBufferMap(GPUVAddr gpu_addr) {
if (const auto iter{buffer_mappings.find(gpu_addr)}; iter != buffer_mappings.end()) {
std::size_t size{};
if (iter->second.IsAllocated()) {
size = iter->second.Size();
}
buffer_mappings.erase(iter);
return size;
}
return std::nullopt;
}
Kernel::KEvent* nvhost_as_gpu::QueryEvent(u32 event_id) {
LOG_CRITICAL(Service_NVDRV, "Unknown AS GPU Event {}", event_id);
return nullptr;

View file

@ -5,14 +5,19 @@
#pragma once
#include <bit>
#include <list>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <vector>
#include "common/address_space.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/swap.h"
#include "core/hle/service/nvdrv/core/nvmap.h"
#include "core/hle/service/nvdrv/devices/nvdevice.h"
namespace Tegra {
@ -30,17 +35,13 @@ class NvMap;
namespace Service::Nvidia::Devices {
constexpr u32 DEFAULT_BIG_PAGE_SIZE = 1 << 16;
constexpr u32 DEFAULT_SMALL_PAGE_SIZE = 1 << 12;
class nvmap;
enum class AddressSpaceFlags : u32 {
None = 0x0,
FixedOffset = 0x1,
Remap = 0x100,
enum class MappingFlags : u32 {
None = 0,
Fixed = 1 << 0,
Sparse = 1 << 1,
Remap = 1 << 8,
};
DECLARE_ENUM_FLAG_OPERATORS(AddressSpaceFlags);
DECLARE_ENUM_FLAG_OPERATORS(MappingFlags);
class nvhost_as_gpu final : public nvdevice {
public:
@ -59,46 +60,15 @@ public:
Kernel::KEvent* QueryEvent(u32 event_id) override;
private:
class BufferMap final {
public:
constexpr BufferMap() = default;
constexpr BufferMap(GPUVAddr start_addr_, std::size_t size_)
: start_addr{start_addr_}, end_addr{start_addr_ + size_} {}
constexpr BufferMap(GPUVAddr start_addr_, std::size_t size_, VAddr cpu_addr_,
bool is_allocated_)
: start_addr{start_addr_}, end_addr{start_addr_ + size_}, cpu_addr{cpu_addr_},
is_allocated{is_allocated_} {}
constexpr VAddr StartAddr() const {
return start_addr;
}
constexpr VAddr EndAddr() const {
return end_addr;
}
constexpr std::size_t Size() const {
return end_addr - start_addr;
}
constexpr VAddr CpuAddr() const {
return cpu_addr;
}
constexpr bool IsAllocated() const {
return is_allocated;
}
private:
GPUVAddr start_addr{};
GPUVAddr end_addr{};
VAddr cpu_addr{};
bool is_allocated{};
struct VaRegion {
u64 offset;
u32 page_size;
u32 _pad0_;
u64 pages;
};
static_assert(sizeof(VaRegion) == 0x18);
private:
struct IoctlAllocAsEx {
u32_le flags{}; // usually passes 1
s32_le as_fd{}; // ignored; passes 0
@ -113,7 +83,7 @@ private:
struct IoctlAllocSpace {
u32_le pages{};
u32_le page_size{};
AddressSpaceFlags flags{};
MappingFlags flags{};
INSERT_PADDING_WORDS(1);
union {
u64_le offset;
@ -130,19 +100,19 @@ private:
static_assert(sizeof(IoctlFreeSpace) == 16, "IoctlFreeSpace is incorrect size");
struct IoctlRemapEntry {
u16_le flags{};
u16_le kind{};
u32_le nvmap_handle{};
u32_le map_offset{};
u32_le offset{};
u32_le pages{};
u16 flags;
u16 kind;
NvCore::NvMap::Handle::Id handle;
u32 handle_offset_big_pages;
u32 as_offset_big_pages;
u32 big_pages;
};
static_assert(sizeof(IoctlRemapEntry) == 20, "IoctlRemapEntry is incorrect size");
struct IoctlMapBufferEx {
AddressSpaceFlags flags{}; // bit0: fixed_offset, bit2: cacheable
u32_le kind{}; // -1 is default
u32_le nvmap_handle{};
MappingFlags flags{}; // bit0: fixed_offset, bit2: cacheable
u32_le kind{}; // -1 is default
NvCore::NvMap::Handle::Id handle;
u32_le page_size{}; // 0 means don't care
s64_le buffer_offset{};
u64_le mapping_size{};
@ -160,27 +130,15 @@ private:
};
static_assert(sizeof(IoctlBindChannel) == 4, "IoctlBindChannel is incorrect size");
struct IoctlVaRegion {
u64_le offset{};
u32_le page_size{};
INSERT_PADDING_WORDS(1);
u64_le pages{};
};
static_assert(sizeof(IoctlVaRegion) == 24, "IoctlVaRegion is incorrect size");
struct IoctlGetVaRegions {
u64_le buf_addr{}; // (contained output user ptr on linux, ignored)
u32_le buf_size{}; // forced to 2*sizeof(struct va_region)
u32_le reserved{};
IoctlVaRegion small{};
IoctlVaRegion big{};
std::array<VaRegion, 2> regions{};
};
static_assert(sizeof(IoctlGetVaRegions) == 16 + sizeof(IoctlVaRegion) * 2,
static_assert(sizeof(IoctlGetVaRegions) == 16 + sizeof(VaRegion) * 2,
"IoctlGetVaRegions is incorrect size");
s32 channel{};
u32 big_page_size{DEFAULT_BIG_PAGE_SIZE};
NvResult AllocAsEx(const std::vector<u8>& input, std::vector<u8>& output);
NvResult AllocateSpace(const std::vector<u8>& input, std::vector<u8>& output);
NvResult Remap(const std::vector<u8>& input, std::vector<u8>& output);
@ -189,23 +147,74 @@ private:
NvResult FreeSpace(const std::vector<u8>& input, std::vector<u8>& output);
NvResult BindChannel(const std::vector<u8>& input, std::vector<u8>& output);
void GetVARegionsImpl(IoctlGetVaRegions& params);
NvResult GetVARegions(const std::vector<u8>& input, std::vector<u8>& output);
NvResult GetVARegions(const std::vector<u8>& input, std::vector<u8>& output,
std::vector<u8>& inline_output);
std::optional<BufferMap> FindBufferMap(GPUVAddr gpu_addr) const;
void AddBufferMap(GPUVAddr gpu_addr, std::size_t size, VAddr cpu_addr, bool is_allocated);
std::optional<std::size_t> RemoveBufferMap(GPUVAddr gpu_addr);
void FreeMappingLocked(u64 offset);
Module& module;
NvCore::Container& container;
NvCore::NvMap& nvmap;
struct Mapping {
VAddr ptr;
u64 offset;
u64 size;
bool fixed;
bool big_page; // Only valid if fixed == false
bool sparse_alloc;
Mapping(VAddr ptr_, u64 offset_, u64 size_, bool fixed_, bool big_page_, bool sparse_alloc_)
: ptr(ptr_), offset(offset_), size(size_), fixed(fixed_), big_page(big_page_),
sparse_alloc(sparse_alloc_) {}
};
struct Allocation {
u64 size;
std::list<std::shared_ptr<Mapping>> mappings;
u32 page_size;
bool sparse;
};
std::map<u64, std::shared_ptr<Mapping>>
mapping_map; //!< This maps the base addresses of mapped buffers to their total sizes and
//!< mapping type, this is needed as what was originally a single buffer may
//!< have been split into multiple GPU side buffers with the remap flag.
std::map<u64, Allocation> allocation_map; //!< Holds allocations created by AllocSpace from
//!< which fixed buffers can be mapped into
std::mutex mutex; //!< Locks all AS operations
struct VM {
static constexpr u32 YUZU_PAGESIZE{0x1000};
static constexpr u32 PAGE_SIZE_BITS{std::countr_zero(YUZU_PAGESIZE)};
static constexpr u32 SUPPORTED_BIG_PAGE_SIZES{0x30000};
static constexpr u32 DEFAULT_BIG_PAGE_SIZE{0x20000};
u32 big_page_size{DEFAULT_BIG_PAGE_SIZE};
u32 big_page_size_bits{std::countr_zero(DEFAULT_BIG_PAGE_SIZE)};
static constexpr u32 VA_START_SHIFT{10};
static constexpr u64 DEFAULT_VA_SPLIT{1ULL << 34};
static constexpr u64 DEFAULT_VA_RANGE{1ULL << 37};
u64 va_range_start{DEFAULT_BIG_PAGE_SIZE << VA_START_SHIFT};
u64 va_range_split{DEFAULT_VA_SPLIT};
u64 va_range_end{DEFAULT_VA_RANGE};
using Allocator = Common::FlatAllocator<u32, 0, 32>;
std::unique_ptr<Allocator> big_page_allocator;
std::shared_ptr<Allocator>
small_page_allocator; //! Shared as this is also used by nvhost::GpuChannel
bool initialised{};
} vm;
std::shared_ptr<Tegra::MemoryManager> gmmu;
// This is expected to be ordered, therefore we must use a map, not unordered_map
std::map<GPUVAddr, BufferMap> buffer_mappings;
// s32 channel{};
// u32 big_page_size{VM::DEFAULT_BIG_PAGE_SIZE};
};
} // namespace Service::Nvidia::Devices