pebble/platform/robert/boot/src/drivers/display/ice40lp.c
2025-01-27 11:38:16 -08:00

186 lines
5.6 KiB
C

/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ice40lp.h"
#include "board/board.h"
#include "drivers/dbgserial.h"
#include "drivers/display/ice40lp_definitions.h"
#include "drivers/gpio.h"
#include "drivers/periph_config.h"
#include "drivers/pmic.h"
#include "system/logging.h"
#include "system/passert.h"
#include "util/delay.h"
#include "stm32f7xx.h"
#include "misc.h"
#include <string.h>
static void prv_spi_init(void) {
// Configure the GPIO (SCLK, MOSI - no MISO since the SPI is TX-only)
gpio_af_init(&ICE40LP->spi.clk, GPIO_OType_PP, GPIO_Speed_25MHz, GPIO_PuPd_NOPULL);
gpio_af_init(&ICE40LP->spi.mosi, GPIO_OType_PP, GPIO_Speed_25MHz, GPIO_PuPd_NOPULL);
// Reset the SPI peripheral and enable the clock
RCC_APB2PeriphResetCmd(ICE40LP->spi.rcc_bit, ENABLE);
RCC_APB2PeriphResetCmd(ICE40LP->spi.rcc_bit, DISABLE);
periph_config_enable(ICE40LP->spi.periph, ICE40LP->spi.rcc_bit);
// Configure CR1 first:
// * TX-only mode (BIDIMODE | BIDIOE)
// * software control NSS pin (SSM | SSI)
// * master mode (MSTR)
// * clock polarity high / 2nd edge (CPOL | CPHA)
ICE40LP->spi.periph->CR1 = SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE | SPI_CR1_SSM | SPI_CR1_SSI |
SPI_CR1_MSTR | SPI_CR1_CPOL | SPI_CR1_CPHA;
// Configure CR2:
// * 8-bit data size (DS[4:0] == 0b0111)
// * 1/4 RX threshold (for 8-bit transfers)
ICE40LP->spi.periph->CR2 = SPI_CR2_DS_0 | SPI_CR2_DS_1 | SPI_CR2_DS_2 | SPI_CR2_FRXTH;
// enable the SPI
ICE40LP->spi.periph->CR1 |= SPI_CR1_SPE;
}
static void prv_spi_write(const uint8_t *data, uint32_t len) {
for (uint32_t i = 0; i < len; ++i) {
// Wait until we can transmit.
while (!(ICE40LP->spi.periph->SR & SPI_SR_TXE)) continue;
// Write a byte. STM32F7 needs to access as 8 bits in order to actually do 8 bits.
*(volatile uint8_t*)&ICE40LP->spi.periph->DR = data[i];
}
// Wait until the TX FIFO is empty plus an extra little bit for the shift-register.
while (((ICE40LP->spi.periph->SR & SPI_SR_FTLVL) >> __builtin_ctz(SPI_SR_FTLVL)) > 0) continue;
delay_us(10);
}
bool display_busy(void) {
return gpio_input_read(&ICE40LP->busy);
}
void display_start(void) {
// Configure SCS before CRESET and before configuring the SPI so that we don't end up with the
// FPGA in the "SPI Master Configuration Interface" on bigboards which don't have NVCM. If we end
// up in this mode, the FPGA will drive the clock and put the SPI peripheral in a bad state.
gpio_output_init(&ICE40LP->spi.scs, GPIO_OType_PP, GPIO_Speed_25MHz);
gpio_output_set(&ICE40LP->spi.scs, false);
gpio_input_init(&ICE40LP->cdone);
gpio_input_init(&ICE40LP->busy);
gpio_output_init(&ICE40LP->creset, GPIO_OType_OD, GPIO_Speed_25MHz);
prv_spi_init();
}
bool display_program(const uint8_t *fpga_bitstream, uint32_t bitstream_size) {
InputConfig creset_input = {
.gpio = ICE40LP->creset.gpio,
.gpio_pin = ICE40LP->creset.gpio_pin,
};
delay_ms(1);
gpio_output_set(&ICE40LP->spi.scs, true); // SCS asserted (low)
gpio_output_set(&ICE40LP->creset, false); // CRESET LOW
delay_ms(1);
if (gpio_input_read(&creset_input)) {
dbgserial_putstr("CRESET not low during reset");
return false;
}
gpio_output_set(&ICE40LP->creset, true); // CRESET -> HIGH
delay_ms(1);
if (gpio_input_read(&ICE40LP->cdone)) {
dbgserial_putstr("CDONE not low after reset");
return false;
}
if (!gpio_input_read(&creset_input)) {
dbgserial_putstr("CRESET not high after reset");
return false;
}
delay_ms(1);
// Program the FPGA
prv_spi_write(fpga_bitstream, bitstream_size);
// Set SCS high so that we don't process any of these clocks as commands.
gpio_output_set(&ICE40LP->spi.scs, false); // SCS not asserted (high)
// 49+ SCLK cycles to tell FPGA we're done configuration.
static const uint8_t spi_zeros[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
prv_spi_write(spi_zeros, sizeof(spi_zeros));
if (!gpio_input_read(&ICE40LP->cdone)) {
dbgserial_putstr("CDONE not high after programming");
return false;
}
return true;
}
void display_power_enable(void) {
// The display requires us to wait 1ms between each power rail coming up. The PMIC
// initialization brings up the 3.2V rail (VLCD on the display, LD02 on the PMIC) for us, but
// we still need to wait before turning on the subsequent rails.
delay_ms(2);
if (ICE40LP->use_6v6_rail) {
dbgserial_putstr("Enabling 6v6 (Display VDDC)");
set_6V6_power_state(true);
delay_ms(2);
}
dbgserial_putstr("Enabling 4v5 (Display VDDP)");
set_4V5_power_state(true);
}
void display_power_disable(void) {
dbgserial_putstr("Disabling 4v5 (Display VDDP)");
set_4V5_power_state(false);
delay_ms(2);
if (ICE40LP->use_6v6_rail) {
dbgserial_putstr("Disabling 6v6 (Display VDDC)");
set_6V6_power_state(false);
delay_ms(2);
}
}
void display_write_cmd(uint8_t cmd, uint8_t *arg, uint32_t arg_len) {
gpio_output_set(&ICE40LP->spi.scs, true); // SCS asserted (low)
delay_us(100);
prv_spi_write(&cmd, sizeof(cmd));
if (arg_len) {
prv_spi_write(arg, arg_len);
}
gpio_output_set(&ICE40LP->spi.scs, false); // SCS not asserted (high)
}