video_core: Implement conversion for uncommon/unsupported number formats. (#2047)

* video_core: Implement conversion for uncommon/unsupported number formats.

* shader_recompiler: Reinterpret image sample output as well.

* liverpool_to_vk: Remove mappings for remapped number formats.

These were poorly supported by drivers anyway.

* resource_tracking_pass: Fix image write swizzle mistake.

* amdgpu: Add missing specialization and move format mapping data to types

* reinterpret: Fix U/SToF input type.
This commit is contained in:
squidbus 2025-01-07 02:21:49 -08:00 committed by GitHub
parent c3ecf599ad
commit b0d7feb292
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 486 additions and 385 deletions

View file

@ -2,6 +2,7 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "shader_recompiler/frontend/translate/translate.h"
#include "shader_recompiler/ir/reinterpret.h"
#include "shader_recompiler/runtime_info.h"
namespace Shader::Gcn {
@ -31,14 +32,16 @@ void Translator::EmitExport(const GcnInst& inst) {
return;
}
const u32 index = u32(attrib) - u32(IR::Attribute::RenderTarget0);
const auto [r, g, b, a] = runtime_info.fs_info.color_buffers[index].swizzle;
const auto col_buf = runtime_info.fs_info.color_buffers[index];
const auto converted = IR::ApplyWriteNumberConversion(ir, value, col_buf.num_conversion);
const auto [r, g, b, a] = col_buf.swizzle;
const std::array swizzle_array = {r, g, b, a};
const auto swizzled_comp = swizzle_array[comp];
if (u32(swizzled_comp) < u32(AmdGpu::CompSwizzle::Red)) {
ir.SetAttribute(attrib, value, comp);
ir.SetAttribute(attrib, converted, comp);
return;
}
ir.SetAttribute(attrib, value, u32(swizzled_comp) - u32(AmdGpu::CompSwizzle::Red));
ir.SetAttribute(attrib, converted, u32(swizzled_comp) - u32(AmdGpu::CompSwizzle::Red));
};
const auto unpack = [&](u32 idx) {

View file

@ -301,8 +301,7 @@ s32 TryHandleInlineCbuf(IR::Inst& inst, Info& info, Descriptors& descriptors,
});
}
void PatchBufferInstruction(IR::Block& block, IR::Inst& inst, Info& info,
Descriptors& descriptors) {
void PatchBufferSharp(IR::Block& block, IR::Inst& inst, Info& info, Descriptors& descriptors) {
s32 binding{};
AmdGpu::Buffer buffer;
if (binding = TryHandleInlineCbuf(inst, info, descriptors, buffer); binding == -1) {
@ -317,19 +316,191 @@ void PatchBufferInstruction(IR::Block& block, IR::Inst& inst, Info& info,
});
}
// Update buffer descriptor format.
const auto inst_info = inst.Flags<IR::BufferInstInfo>();
// Replace handle with binding index in buffer resource list.
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
inst.SetArg(0, ir.Imm32(binding));
}
void PatchTextureBufferSharp(IR::Block& block, IR::Inst& inst, Info& info,
Descriptors& descriptors) {
const IR::Inst* handle = inst.Arg(0).InstRecursive();
const IR::Inst* producer = handle->Arg(0).InstRecursive();
const auto sharp = TrackSharp(producer, info);
const s32 binding = descriptors.Add(TextureBufferResource{
.sharp_idx = sharp,
.is_written = inst.GetOpcode() == IR::Opcode::StoreBufferFormatF32,
});
// Replace handle with binding index in texture buffer resource list.
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
inst.SetArg(0, ir.Imm32(binding));
}
void PatchImageSharp(IR::Block& block, IR::Inst& inst, Info& info, Descriptors& descriptors) {
const auto pred = [](const IR::Inst* inst) -> std::optional<const IR::Inst*> {
const auto opcode = inst->GetOpcode();
if (opcode == IR::Opcode::CompositeConstructU32x2 || // IMAGE_SAMPLE (image+sampler)
opcode == IR::Opcode::ReadConst || // IMAGE_LOAD (image only)
opcode == IR::Opcode::GetUserData) {
return inst;
}
return std::nullopt;
};
const auto result = IR::BreadthFirstSearch(&inst, pred);
ASSERT_MSG(result, "Unable to find image sharp source");
const IR::Inst* producer = result.value();
const bool has_sampler = producer->GetOpcode() == IR::Opcode::CompositeConstructU32x2;
const auto tsharp_handle = has_sampler ? producer->Arg(0).InstRecursive() : producer;
// Read image sharp.
const auto tsharp = TrackSharp(tsharp_handle, info);
const auto inst_info = inst.Flags<IR::TextureInstInfo>();
auto image = info.ReadUdSharp<AmdGpu::Image>(tsharp);
if (!image.Valid()) {
LOG_ERROR(Render_Vulkan, "Shader compiled with unbound image!");
image = AmdGpu::Image::Null();
}
ASSERT(image.GetType() != AmdGpu::ImageType::Invalid);
const bool is_read = inst.GetOpcode() == IR::Opcode::ImageRead;
const bool is_written = inst.GetOpcode() == IR::Opcode::ImageWrite;
// Patch image instruction if image is FMask.
if (image.IsFmask()) {
ASSERT_MSG(!is_written, "FMask storage instructions are not supported");
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
switch (inst.GetOpcode()) {
case IR::Opcode::ImageRead:
case IR::Opcode::ImageSampleRaw: {
IR::F32 fmaskx = ir.BitCast<IR::F32>(ir.Imm32(0x76543210));
IR::F32 fmasky = ir.BitCast<IR::F32>(ir.Imm32(0xfedcba98));
inst.ReplaceUsesWith(ir.CompositeConstruct(fmaskx, fmasky));
return;
}
case IR::Opcode::ImageQueryLod:
inst.ReplaceUsesWith(ir.Imm32(1));
return;
case IR::Opcode::ImageQueryDimensions: {
IR::Value dims = ir.CompositeConstruct(ir.Imm32(static_cast<u32>(image.width)), // x
ir.Imm32(static_cast<u32>(image.width)), // y
ir.Imm32(1), ir.Imm32(1)); // depth, mip
inst.ReplaceUsesWith(dims);
// Track FMask resource to do specialization.
descriptors.Add(FMaskResource{
.sharp_idx = tsharp,
});
return;
}
default:
UNREACHABLE_MSG("Can't patch fmask instruction {}", inst.GetOpcode());
}
}
u32 image_binding = descriptors.Add(ImageResource{
.sharp_idx = tsharp,
.is_depth = bool(inst_info.is_depth),
.is_atomic = IsImageAtomicInstruction(inst),
.is_array = bool(inst_info.is_array),
.is_read = is_read,
.is_written = is_written,
});
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
if (inst.GetOpcode() == IR::Opcode::ImageSampleRaw) {
// Read sampler sharp.
const auto [sampler_binding, sampler] = [&] -> std::pair<u32, AmdGpu::Sampler> {
ASSERT(producer->GetOpcode() == IR::Opcode::CompositeConstructU32x2);
const IR::Value& handle = producer->Arg(1);
// Inline sampler resource.
if (handle.IsImmediate()) {
LOG_WARNING(Render_Vulkan, "Inline sampler detected");
const auto inline_sampler = AmdGpu::Sampler{.raw0 = handle.U32()};
const auto binding = descriptors.Add(SamplerResource{
.sharp_idx = std::numeric_limits<u32>::max(),
.inline_sampler = inline_sampler,
});
return {binding, inline_sampler};
}
// Normal sampler resource.
const auto ssharp_handle = handle.InstRecursive();
const auto& [ssharp_ud, disable_aniso] = TryDisableAnisoLod0(ssharp_handle);
const auto ssharp = TrackSharp(ssharp_ud, info);
const auto binding = descriptors.Add(SamplerResource{
.sharp_idx = ssharp,
.associated_image = image_binding,
.disable_aniso = disable_aniso,
});
return {binding, info.ReadUdSharp<AmdGpu::Sampler>(ssharp)};
}();
// Patch image and sampler handle.
inst.SetArg(0, ir.Imm32(image_binding | sampler_binding << 16));
} else {
// Patch image handle.
inst.SetArg(0, ir.Imm32(image_binding));
}
}
void PatchDataRingAccess(IR::Block& block, IR::Inst& inst, Info& info, Descriptors& descriptors) {
// Insert gds binding in the shader if it doesn't exist already.
// The buffer is used for append/consume counters.
constexpr static AmdGpu::Buffer GdsSharp{.base_address = 1};
const u32 binding = descriptors.Add(BufferResource{
.used_types = IR::Type::U32,
.inline_cbuf = GdsSharp,
.is_gds_buffer = true,
.is_written = true,
});
const auto pred = [](const IR::Inst* inst) -> std::optional<const IR::Inst*> {
if (inst->GetOpcode() == IR::Opcode::GetUserData) {
return inst;
}
return std::nullopt;
};
// Attempt to deduce the GDS address of counter at compile time.
const u32 gds_addr = [&] {
const IR::Value& gds_offset = inst.Arg(0);
if (gds_offset.IsImmediate()) {
// Nothing to do, offset is known.
return gds_offset.U32() & 0xFFFF;
}
const auto result = IR::BreadthFirstSearch(&inst, pred);
ASSERT_MSG(result, "Unable to track M0 source");
// M0 must be set by some user data register.
const IR::Inst* prod = gds_offset.InstRecursive();
const u32 ud_reg = u32(result.value()->Arg(0).ScalarReg());
u32 m0_val = info.user_data[ud_reg] >> 16;
if (prod->GetOpcode() == IR::Opcode::IAdd32) {
m0_val += prod->Arg(1).U32();
}
return m0_val & 0xFFFF;
}();
// Patch instruction.
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
inst.SetArg(0, ir.Imm32(gds_addr >> 2));
inst.SetArg(1, ir.Imm32(binding));
}
void PatchBufferArgs(IR::Block& block, IR::Inst& inst, Info& info) {
const auto handle = inst.Arg(0);
const auto buffer_res = info.buffers[handle.U32()];
const auto buffer = buffer_res.GetSharp(info);
ASSERT(!buffer.add_tid_enable);
// Address of constant buffer reads can be calculated at IR emittion time.
// Address of constant buffer reads can be calculated at IR emission time.
if (inst.GetOpcode() == IR::Opcode::ReadConstBuffer) {
return;
}
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
const auto inst_info = inst.Flags<IR::BufferInstInfo>();
const IR::U32 index_stride = ir.Imm32(buffer.index_stride);
const IR::U32 element_size = ir.Imm32(buffer.element_size);
@ -366,21 +537,27 @@ void PatchBufferInstruction(IR::Block& block, IR::Inst& inst, Info& info,
inst.SetArg(1, address);
}
void PatchTextureBufferInstruction(IR::Block& block, IR::Inst& inst, Info& info,
Descriptors& descriptors) {
const IR::Inst* handle = inst.Arg(0).InstRecursive();
const IR::Inst* producer = handle->Arg(0).InstRecursive();
const auto sharp = TrackSharp(producer, info);
const auto buffer = info.ReadUdSharp<AmdGpu::Buffer>(sharp);
const s32 binding = descriptors.Add(TextureBufferResource{
.sharp_idx = sharp,
.is_written = inst.GetOpcode() == IR::Opcode::StoreBufferFormatF32,
});
void PatchTextureBufferArgs(IR::Block& block, IR::Inst& inst, Info& info) {
const auto handle = inst.Arg(0);
const auto buffer_res = info.texture_buffers[handle.U32()];
const auto buffer = buffer_res.GetSharp(info);
// Replace handle with binding index in texture buffer resource list.
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
inst.SetArg(0, ir.Imm32(binding));
ASSERT(!buffer.swizzle_enable && !buffer.add_tid_enable);
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
if (inst.GetOpcode() == IR::Opcode::StoreBufferFormatF32) {
const auto swizzled = ApplySwizzle(ir, inst.Arg(2), buffer.DstSelect());
const auto converted =
ApplyWriteNumberConversionVec4(ir, swizzled, buffer.GetNumberConversion());
inst.SetArg(2, converted);
} else if (inst.GetOpcode() == IR::Opcode::LoadBufferFormatF32) {
const auto inst_info = inst.Flags<IR::BufferInstInfo>();
const auto texel = ir.LoadBufferFormat(inst.Arg(0), inst.Arg(1), inst_info);
const auto swizzled = ApplySwizzle(ir, texel, buffer.DstSelect());
const auto converted =
ApplyReadNumberConversionVec4(ir, swizzled, buffer.GetNumberConversion());
inst.ReplaceUsesWith(converted);
}
}
IR::Value PatchCubeCoord(IR::IREmitter& ir, const IR::Value& s, const IR::Value& t,
@ -409,39 +586,14 @@ IR::Value PatchCubeCoord(IR::IREmitter& ir, const IR::Value& s, const IR::Value&
}
}
void PatchImageSampleInstruction(IR::Block& block, IR::Inst& inst, Info& info,
Descriptors& descriptors, const IR::Inst* producer,
const u32 image_binding, const AmdGpu::Image& image) {
// Read sampler sharp. This doesn't exist for IMAGE_LOAD/IMAGE_STORE instructions
const auto [sampler_binding, sampler] = [&] -> std::pair<u32, AmdGpu::Sampler> {
ASSERT(producer->GetOpcode() == IR::Opcode::CompositeConstructU32x2);
const IR::Value& handle = producer->Arg(1);
// Inline sampler resource.
if (handle.IsImmediate()) {
LOG_WARNING(Render_Vulkan, "Inline sampler detected");
const auto inline_sampler = AmdGpu::Sampler{.raw0 = handle.U32()};
const auto binding = descriptors.Add(SamplerResource{
.sharp_idx = std::numeric_limits<u32>::max(),
.inline_sampler = inline_sampler,
});
return {binding, inline_sampler};
}
// Normal sampler resource.
const auto ssharp_handle = handle.InstRecursive();
const auto& [ssharp_ud, disable_aniso] = TryDisableAnisoLod0(ssharp_handle);
const auto ssharp = TrackSharp(ssharp_ud, info);
const auto binding = descriptors.Add(SamplerResource{
.sharp_idx = ssharp,
.associated_image = image_binding,
.disable_aniso = disable_aniso,
});
return {binding, info.ReadUdSharp<AmdGpu::Sampler>(ssharp)};
}();
void PatchImageSampleArgs(IR::Block& block, IR::Inst& inst, Info& info,
const AmdGpu::Image& image) {
const auto handle = inst.Arg(0);
const auto sampler_res = info.samplers[(handle.U32() >> 16) & 0xFFFF];
auto sampler = sampler_res.GetSharp(info);
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
const auto inst_info = inst.Flags<IR::TextureInstInfo>();
const IR::U32 handle = ir.Imm32(image_binding | sampler_binding << 16);
IR::Inst* body1 = inst.Arg(1).InstRecursive();
IR::Inst* body2 = inst.Arg(2).InstRecursive();
@ -539,8 +691,7 @@ void PatchImageSampleInstruction(IR::Block& block, IR::Inst& inst, Info& info,
// Query dimensions of image if needed for normalization.
// We can't use the image sharp because it could be bound to a different image later.
const auto dimensions =
unnormalized ? ir.ImageQueryDimension(ir.Imm32(image_binding), ir.Imm32(0u), ir.Imm1(false))
: IR::Value{};
unnormalized ? ir.ImageQueryDimension(handle, ir.Imm32(0u), ir.Imm1(false)) : IR::Value{};
const auto get_coord = [&](u32 coord_idx, u32 dim_idx) -> IR::Value {
const auto coord = get_addr_reg(coord_idx);
if (unnormalized) {
@ -589,7 +740,7 @@ void PatchImageSampleInstruction(IR::Block& block, IR::Inst& inst, Info& info,
: IR::F32{};
const IR::F32 lod_clamp = inst_info.has_lod_clamp ? get_addr_reg(addr_reg++) : IR::F32{};
auto new_inst = [&] -> IR::Value {
auto texel = [&] -> IR::Value {
if (inst_info.is_gather) {
if (inst_info.is_depth) {
return ir.ImageGatherDref(handle, coords, offset, dref, inst_info);
@ -611,94 +762,30 @@ void PatchImageSampleInstruction(IR::Block& block, IR::Inst& inst, Info& info,
}
return ir.ImageSampleImplicitLod(handle, coords, bias, offset, inst_info);
}();
inst.ReplaceUsesWithAndRemove(new_inst);
const auto converted = ApplyReadNumberConversionVec4(ir, texel, image.GetNumberConversion());
inst.ReplaceUsesWith(converted);
}
void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descriptors& descriptors) {
const auto pred = [](const IR::Inst* inst) -> std::optional<const IR::Inst*> {
const auto opcode = inst->GetOpcode();
if (opcode == IR::Opcode::CompositeConstructU32x2 || // IMAGE_SAMPLE (image+sampler)
opcode == IR::Opcode::ReadConst || // IMAGE_LOAD (image only)
opcode == IR::Opcode::GetUserData) {
return inst;
}
return std::nullopt;
};
const auto result = IR::BreadthFirstSearch(&inst, pred);
ASSERT_MSG(result, "Unable to find image sharp source");
const IR::Inst* producer = result.value();
const bool has_sampler = producer->GetOpcode() == IR::Opcode::CompositeConstructU32x2;
const auto tsharp_handle = has_sampler ? producer->Arg(0).InstRecursive() : producer;
// Read image sharp.
const auto tsharp = TrackSharp(tsharp_handle, info);
const auto inst_info = inst.Flags<IR::TextureInstInfo>();
auto image = info.ReadUdSharp<AmdGpu::Image>(tsharp);
if (!image.Valid()) {
LOG_ERROR(Render_Vulkan, "Shader compiled with unbound image!");
image = AmdGpu::Image::Null();
}
ASSERT(image.GetType() != AmdGpu::ImageType::Invalid);
const bool is_read = inst.GetOpcode() == IR::Opcode::ImageRead;
const bool is_written = inst.GetOpcode() == IR::Opcode::ImageWrite;
// Patch image instruction if image is FMask.
if (image.IsFmask()) {
ASSERT_MSG(!is_written, "FMask storage instructions are not supported");
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
switch (inst.GetOpcode()) {
case IR::Opcode::ImageRead:
case IR::Opcode::ImageSampleRaw: {
IR::F32 fmaskx = ir.BitCast<IR::F32>(ir.Imm32(0x76543210));
IR::F32 fmasky = ir.BitCast<IR::F32>(ir.Imm32(0xfedcba98));
inst.ReplaceUsesWith(ir.CompositeConstruct(fmaskx, fmasky));
return;
}
case IR::Opcode::ImageQueryLod:
inst.ReplaceUsesWith(ir.Imm32(1));
return;
case IR::Opcode::ImageQueryDimensions: {
IR::Value dims = ir.CompositeConstruct(ir.Imm32(static_cast<u32>(image.width)), // x
ir.Imm32(static_cast<u32>(image.width)), // y
ir.Imm32(1), ir.Imm32(1)); // depth, mip
inst.ReplaceUsesWith(dims);
// Track FMask resource to do specialization.
descriptors.Add(FMaskResource{
.sharp_idx = tsharp,
});
return;
}
default:
UNREACHABLE_MSG("Can't patch fmask instruction {}", inst.GetOpcode());
}
}
u32 image_binding = descriptors.Add(ImageResource{
.sharp_idx = tsharp,
.is_depth = bool(inst_info.is_depth),
.is_atomic = IsImageAtomicInstruction(inst),
.is_array = bool(inst_info.is_array),
.is_read = is_read,
.is_written = is_written,
});
// Sample instructions must be resolved into a new instruction using address register data.
if (inst.GetOpcode() == IR::Opcode::ImageSampleRaw) {
PatchImageSampleInstruction(block, inst, info, descriptors, producer, image_binding, image);
return;
}
// Patch image handle
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
inst.SetArg(0, ir.Imm32(image_binding));
// No need to patch coordinates if we are just querying.
void PatchImageArgs(IR::Block& block, IR::Inst& inst, Info& info) {
// Nothing to patch for dimension query.
if (inst.GetOpcode() == IR::Opcode::ImageQueryDimensions) {
return;
}
const auto handle = inst.Arg(0);
const auto image_res = info.images[handle.U32() & 0xFFFF];
auto image = image_res.GetSharp(info);
// Sample instructions must be handled separately using address register data.
if (inst.GetOpcode() == IR::Opcode::ImageSampleRaw) {
PatchImageSampleArgs(block, inst, info, image);
return;
}
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
const auto inst_info = inst.Flags<IR::TextureInstInfo>();
// Now that we know the image type, adjust texture coordinate vector.
IR::Inst* body = inst.Arg(1).InstRecursive();
const auto [coords, arg] = [&] -> std::pair<IR::Value, IR::Value> {
@ -719,152 +806,77 @@ void PatchImageInstruction(IR::Block& block, IR::Inst& inst, Info& info, Descrip
case AmdGpu::ImageType::Color3D: // x, y, z, [lod]
return {ir.CompositeConstruct(body->Arg(0), body->Arg(1), body->Arg(2)), body->Arg(3)};
case AmdGpu::ImageType::Cube: // x, y, face, [lod]
return {PatchCubeCoord(ir, body->Arg(0), body->Arg(1), body->Arg(2), is_written,
inst_info.is_array),
return {PatchCubeCoord(ir, body->Arg(0), body->Arg(1), body->Arg(2),
inst.GetOpcode() == IR::Opcode::ImageWrite, inst_info.is_array),
body->Arg(3)};
default:
UNREACHABLE_MSG("Unknown image type {}", image.GetType());
}
}();
inst.SetArg(1, coords);
if (inst_info.has_lod) {
ASSERT(inst.GetOpcode() == IR::Opcode::ImageRead ||
inst.GetOpcode() == IR::Opcode::ImageWrite);
ASSERT(image.GetType() != AmdGpu::ImageType::Color2DMsaa &&
image.GetType() != AmdGpu::ImageType::Color2DMsaaArray);
inst.SetArg(2, arg);
} else if ((image.GetType() == AmdGpu::ImageType::Color2DMsaa ||
image.GetType() == AmdGpu::ImageType::Color2DMsaaArray) &&
(inst.GetOpcode() == IR::Opcode::ImageRead ||
inst.GetOpcode() == IR::Opcode::ImageWrite)) {
inst.SetArg(3, arg);
}
}
const auto has_ms = image.GetType() == AmdGpu::ImageType::Color2DMsaa ||
image.GetType() == AmdGpu::ImageType::Color2DMsaaArray;
ASSERT(!inst_info.has_lod || !has_ms);
const auto lod = inst_info.has_lod ? IR::U32{arg} : IR::U32{};
const auto ms = has_ms ? IR::U32{arg} : IR::U32{};
void PatchTextureBufferInterpretation(IR::Block& block, IR::Inst& inst, Info& info) {
const auto binding = inst.Arg(0).U32();
const auto buffer_res = info.texture_buffers[binding];
const auto buffer = buffer_res.GetSharp(info);
if (!buffer.Valid()) {
// Don't need to swizzle invalid buffer.
return;
}
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
if (inst.GetOpcode() == IR::Opcode::StoreBufferFormatF32) {
inst.SetArg(2, ApplySwizzle(ir, inst.Arg(2), buffer.DstSelect()));
} else if (inst.GetOpcode() == IR::Opcode::LoadBufferFormatF32) {
const auto inst_info = inst.Flags<IR::BufferInstInfo>();
const auto texel = ir.LoadBufferFormat(inst.Arg(0), inst.Arg(1), inst_info);
const auto swizzled = ApplySwizzle(ir, texel, buffer.DstSelect());
inst.ReplaceUsesWith(swizzled);
}
}
void PatchImageInterpretation(IR::Block& block, IR::Inst& inst, Info& info) {
const auto binding = inst.Arg(0).U32();
const auto image_res = info.images[binding & 0xFFFF];
const auto image = image_res.GetSharp(info);
if (!image.Valid() || !image_res.IsStorage(image)) {
// Don't need to swizzle invalid or non-storage image.
return;
}
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
if (inst.GetOpcode() == IR::Opcode::ImageWrite) {
inst.SetArg(4, ApplySwizzle(ir, inst.Arg(4), image.DstSelect()));
} else if (inst.GetOpcode() == IR::Opcode::ImageRead) {
const auto inst_info = inst.Flags<IR::TextureInstInfo>();
const auto lod = inst.Arg(2);
const auto ms = inst.Arg(3);
const auto texel =
ir.ImageRead(inst.Arg(0), inst.Arg(1), lod.IsEmpty() ? IR::U32{} : IR::U32{lod},
ms.IsEmpty() ? IR::U32{} : IR::U32{ms}, inst_info);
const auto swizzled = ApplySwizzle(ir, texel, image.DstSelect());
inst.ReplaceUsesWith(swizzled);
}
}
void PatchDataRingInstruction(IR::Block& block, IR::Inst& inst, Info& info,
Descriptors& descriptors) {
// Insert gds binding in the shader if it doesn't exist already.
// The buffer is used for append/consume counters.
constexpr static AmdGpu::Buffer GdsSharp{.base_address = 1};
const u32 binding = descriptors.Add(BufferResource{
.used_types = IR::Type::U32,
.inline_cbuf = GdsSharp,
.is_gds_buffer = true,
.is_written = true,
});
const auto pred = [](const IR::Inst* inst) -> std::optional<const IR::Inst*> {
if (inst->GetOpcode() == IR::Opcode::GetUserData) {
return inst;
const auto is_storage = image_res.IsStorage(image);
if (inst.GetOpcode() == IR::Opcode::ImageRead) {
auto texel = ir.ImageRead(handle, coords, lod, ms, inst_info);
if (is_storage) {
// Storage image requires shader swizzle.
texel = ApplySwizzle(ir, texel, image.DstSelect());
}
return std::nullopt;
};
const auto converted =
ApplyReadNumberConversionVec4(ir, texel, image.GetNumberConversion());
inst.ReplaceUsesWith(converted);
} else {
inst.SetArg(1, coords);
if (inst.GetOpcode() == IR::Opcode::ImageWrite) {
inst.SetArg(2, lod);
inst.SetArg(3, ms);
// Attempt to deduce the GDS address of counter at compile time.
const u32 gds_addr = [&] {
const IR::Value& gds_offset = inst.Arg(0);
if (gds_offset.IsImmediate()) {
// Nothing to do, offset is known.
return gds_offset.U32() & 0xFFFF;
auto texel = inst.Arg(4);
if (is_storage) {
// Storage image requires shader swizzle.
texel = ApplySwizzle(ir, texel, image.DstSelect());
}
const auto converted =
ApplyWriteNumberConversionVec4(ir, texel, image.GetNumberConversion());
inst.SetArg(4, converted);
}
const auto result = IR::BreadthFirstSearch(&inst, pred);
ASSERT_MSG(result, "Unable to track M0 source");
// M0 must be set by some user data register.
const IR::Inst* prod = gds_offset.InstRecursive();
const u32 ud_reg = u32(result.value()->Arg(0).ScalarReg());
u32 m0_val = info.user_data[ud_reg] >> 16;
if (prod->GetOpcode() == IR::Opcode::IAdd32) {
m0_val += prod->Arg(1).U32();
}
return m0_val & 0xFFFF;
}();
// Patch instruction.
IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)};
inst.SetArg(0, ir.Imm32(gds_addr >> 2));
inst.SetArg(1, ir.Imm32(binding));
}
}
void ResourceTrackingPass(IR::Program& program) {
// Iterate resource instructions and patch them after finding the sharp.
auto& info = program.info;
// Pass 1: Track resource sharps
Descriptors descriptors{info};
for (IR::Block* const block : program.blocks) {
for (IR::Inst& inst : block->Instructions()) {
if (IsBufferInstruction(inst)) {
PatchBufferInstruction(*block, inst, info, descriptors);
continue;
}
if (IsTextureBufferInstruction(inst)) {
PatchTextureBufferInstruction(*block, inst, info, descriptors);
continue;
}
if (IsImageInstruction(inst)) {
PatchImageInstruction(*block, inst, info, descriptors);
continue;
}
if (IsDataRingInstruction(inst)) {
PatchDataRingInstruction(*block, inst, info, descriptors);
PatchBufferSharp(*block, inst, info, descriptors);
} else if (IsTextureBufferInstruction(inst)) {
PatchTextureBufferSharp(*block, inst, info, descriptors);
} else if (IsImageInstruction(inst)) {
PatchImageSharp(*block, inst, info, descriptors);
} else if (IsDataRingInstruction(inst)) {
PatchDataRingAccess(*block, inst, info, descriptors);
}
}
}
// Second pass to reinterpret format read/write where needed, since we now know
// the bindings and their properties.
// Pass 2: Patch instruction args
for (IR::Block* const block : program.blocks) {
for (IR::Inst& inst : block->Instructions()) {
if (IsTextureBufferInstruction(inst)) {
PatchTextureBufferInterpretation(*block, inst, info);
continue;
}
if (IsImageInstruction(inst)) {
PatchImageInterpretation(*block, inst, info);
if (IsBufferInstruction(inst)) {
PatchBufferArgs(*block, inst, info);
} else if (IsTextureBufferInstruction(inst)) {
PatchTextureBufferArgs(*block, inst, info);
} else if (IsImageInstruction(inst)) {
PatchImageArgs(*block, inst, info);
}
}
}

View file

@ -4,7 +4,7 @@
#pragma once
#include "shader_recompiler/ir/ir_emitter.h"
#include "video_core/amdgpu/resource.h"
#include "video_core/amdgpu/types.h"
namespace Shader::IR {
@ -21,4 +21,66 @@ inline Value ApplySwizzle(IREmitter& ir, const Value& vector, const AmdGpu::Comp
return swizzled;
}
/// Applies a number conversion in the read direction.
inline F32 ApplyReadNumberConversion(IREmitter& ir, const F32& value,
const AmdGpu::NumberConversion& conversion) {
switch (conversion) {
case AmdGpu::NumberConversion::None:
return value;
case AmdGpu::NumberConversion::UintToUscaled:
return ir.ConvertUToF(32, 32, ir.BitCast<U32>(value));
case AmdGpu::NumberConversion::SintToSscaled:
return ir.ConvertSToF(32, 32, ir.BitCast<U32>(value));
case AmdGpu::NumberConversion::UnormToUbnorm:
// Convert 0...1 to -1...1
return ir.FPSub(ir.FPMul(value, ir.Imm32(2.f)), ir.Imm32(1.f));
default:
UNREACHABLE();
}
}
inline Value ApplyReadNumberConversionVec4(IREmitter& ir, const Value& value,
const AmdGpu::NumberConversion& conversion) {
if (conversion == AmdGpu::NumberConversion::None) {
return value;
}
const auto x = ApplyReadNumberConversion(ir, F32{ir.CompositeExtract(value, 0)}, conversion);
const auto y = ApplyReadNumberConversion(ir, F32{ir.CompositeExtract(value, 1)}, conversion);
const auto z = ApplyReadNumberConversion(ir, F32{ir.CompositeExtract(value, 2)}, conversion);
const auto w = ApplyReadNumberConversion(ir, F32{ir.CompositeExtract(value, 3)}, conversion);
return ir.CompositeConstruct(x, y, z, w);
}
/// Applies a number conversion in the write direction.
inline F32 ApplyWriteNumberConversion(IREmitter& ir, const F32& value,
const AmdGpu::NumberConversion& conversion) {
switch (conversion) {
case AmdGpu::NumberConversion::None:
return value;
case AmdGpu::NumberConversion::UintToUscaled:
// Need to return float type to maintain IR semantics.
return ir.BitCast<F32>(U32{ir.ConvertFToU(32, value)});
case AmdGpu::NumberConversion::SintToSscaled:
// Need to return float type to maintain IR semantics.
return ir.BitCast<F32>(U32{ir.ConvertFToS(32, value)});
case AmdGpu::NumberConversion::UnormToUbnorm:
// Convert -1...1 to 0...1
return ir.FPDiv(ir.FPAdd(value, ir.Imm32(1.f)), ir.Imm32(2.f));
default:
UNREACHABLE();
}
}
inline Value ApplyWriteNumberConversionVec4(IREmitter& ir, const Value& value,
const AmdGpu::NumberConversion& conversion) {
if (conversion == AmdGpu::NumberConversion::None) {
return value;
}
const auto x = ApplyWriteNumberConversion(ir, F32{ir.CompositeExtract(value, 0)}, conversion);
const auto y = ApplyWriteNumberConversion(ir, F32{ir.CompositeExtract(value, 1)}, conversion);
const auto z = ApplyWriteNumberConversion(ir, F32{ir.CompositeExtract(value, 2)}, conversion);
const auto w = ApplyWriteNumberConversion(ir, F32{ir.CompositeExtract(value, 3)}, conversion);
return ir.CompositeConstruct(x, y, z, w);
}
} // namespace Shader::IR

View file

@ -180,6 +180,7 @@ struct FragmentRuntimeInfo {
std::array<PsInput, 32> inputs;
struct PsColorBuffer {
AmdGpu::NumberFormat num_format;
AmdGpu::NumberConversion num_conversion;
AmdGpu::CompMapping swizzle;
auto operator<=>(const PsColorBuffer&) const noexcept = default;

View file

@ -32,6 +32,7 @@ struct BufferSpecialization {
struct TextureBufferSpecialization {
bool is_integer = false;
AmdGpu::CompMapping dst_select{};
AmdGpu::NumberConversion num_conversion{};
auto operator<=>(const TextureBufferSpecialization&) const = default;
};
@ -41,6 +42,7 @@ struct ImageSpecialization {
bool is_integer = false;
bool is_storage = false;
AmdGpu::CompMapping dst_select{};
AmdGpu::NumberConversion num_conversion{};
auto operator<=>(const ImageSpecialization&) const = default;
};
@ -107,6 +109,7 @@ struct StageSpecialization {
[](auto& spec, const auto& desc, AmdGpu::Buffer sharp) {
spec.is_integer = AmdGpu::IsInteger(sharp.GetNumberFmt());
spec.dst_select = sharp.DstSelect();
spec.num_conversion = sharp.GetNumberConversion();
});
ForEachSharp(binding, images, info->images,
[](auto& spec, const auto& desc, AmdGpu::Image sharp) {
@ -116,6 +119,7 @@ struct StageSpecialization {
if (spec.is_storage) {
spec.dst_select = sharp.DstSelect();
}
spec.num_conversion = sharp.GetNumberConversion();
});
ForEachSharp(binding, fmasks, info->fmasks,
[](auto& spec, const auto& desc, AmdGpu::Image sharp) {